学习笔记
Ghost在低语
这个作者很懒,什么都没留下…
展开
-
时空数据挖掘笔记
一、ARIMA原创 2020-12-11 18:35:20 · 276 阅读 · 0 评论 -
深度学习笔记
李宏毅2020机器学习深度学习(完整版)国语一、Course IntroductionRegression 回归 输出数值Classifiction 分类Generation 生成 创造Supervised Learning监督学习Labeled Data提供Label函数的Loss f1原创 2020-11-25 15:24:30 · 229 阅读 · 0 评论 -
Dijkstra算法、A*算法与启发函数
【算法】Dijkstra算法、A*算法与启发函数A*算法搜索思想——DFS & BFS(基础基础篇)Dijkstra算法Dijkstra算法和A*算法总结启发式函数在A* 中的作用A*算法这个从wiki上看来的,一开始是57年提出的Dijkstra算法,然后64年Nils Nilsson提出了A1算法,是一个启发式搜索算法,而后又被改进成为A2算法,直到68年,被Peter E. Hart改进成为A算法,为什么叫A呢,因为原作者借鉴了统计学方面的一个上标,在统计学中,一个变量加上 * 表示这个变原创 2020-10-26 19:12:35 · 1749 阅读 · 0 评论 -
【Task3 神经网络基础 (2 days )】
**【Task3 神经网络基础 (2 days )】**1.基础知识前馈神经网络、网络层数、输入层、隐藏层、输出层、隐藏单元、激活函数的概念。感知机相关;定义简单的几层网络(激活函数sigmoid),递归使用链式法则来实现反向传播。激活函数的种类以及各自的提出背景、优缺点。(和线性模型对比,线性模型的局限性,去线性化)深度学习中的正则化(参数范数惩罚:L1正则化、L2正则化;数据集增...原创 2019-08-12 20:35:29 · 86 阅读 · 0 评论 -
【Task1 数据集探索 (2 days)】
【Task1 数据集探索 (2 days)】1.数据集数据集:中、英文数据集各一份中文数据集:THUCNews英文数据集:IMDB数据集 Sentiment Analysishttp://ai.stanford.edu/~amaas/data/sentiment/2.影评文本分类官方学习文档https://tensorflow.google.cn/tutorials/keras/ba...原创 2019-08-07 20:07:46 · 157 阅读 · 0 评论 -
【Task 2 文本表示:从one-hot到word2vec (2 days)】
**【Task 2 文本表示:从one-hot到word2vec (2 days)】**学习词袋模型概念:离散、高维、稀疏。学习分布式表示概念:连续、低维、稠密。理解word2vec词向量原理并实践,来表示文本。word2vec 中的数学原理详解https://blog.csdn.net/itplus/article/details/37969519word2vec原理推导与代码分析...原创 2019-08-09 20:07:04 · 297 阅读 · 0 评论 -
【Task4 卷积神经网络 (2 days )】
**【Task4 卷积神经网络 (2 days )】**卷积运算的定义、动机(稀疏权重、参数共享、等变表示)。一维卷积运算和二维卷积运算。池化运算的定义、种类(最大池化、平均池化等)、动机。Text-CNN的原理。利用Text-CNN模型来进行文本分类。参考资料:图像卷积与反卷积(后卷积,转置卷积)https://blog.csdn.net/fate_fjh/article/det...原创 2019-08-13 21:15:00 · 123 阅读 · 0 评论 -
决策树算法梳理
1、 信息论基础(熵 联合熵 条件熵 信息增益 基尼不纯度)熵:熵的概念最早起源于物理学,用于度量一个热力学系统的无序程度,在信息论里面,熵是对不确定性的测量。联合熵:联合熵就是度量一个联合分布的随机系统的不确定度。分布为p(x,y)的一对随机变量(X,Y),其联合熵定义为:条件熵:定义事件 X 与 Y 分别取 xi 和 yj 时的条件熵为其中p(xi, yj)为 X = xi 且 ...原创 2019-04-03 20:38:06 · 519 阅读 · 0 评论 -
逻辑回归算法梳理
欢迎使用Markdown编辑器1、逻辑回归与线性回归的联系与区别联系:线性回归决策函数将其通过sigmoid函数,获得逻辑回归的决策函数区别:线性回归用来预测,逻辑回归用来分类。线性回归是拟合函数,逻辑回归是预测函数线性回归的参数计算方法是最小二乘法,逻辑回归的参数计算方法是梯度下降参考博客:https://blog.csdn.net/lx_ros/article/details...原创 2019-04-01 21:48:25 · 180 阅读 · 0 评论 -
线性回归算法梳理
1.机器学习的一些概念有监督:通过已有的训练样本去训练得到一个最优模型,再用这个最优模型去将给定数据转化为相应的输出,来解决相应的问题。回归:定量输出称为回归,比如根据房屋的地理位置,房屋面积大小,以及房屋周边的配套设施等因素,来预测下给定房屋的价格,这就是典型的回归问题。回归问题往往会通过计算误差(Error)来确定模型的精确性。误差由于训练集和验证集的不同,会被分为训练误差(Train...原创 2019-03-30 13:26:16 · 203 阅读 · 0 评论