题目描述
我们可以用 2*1 的小矩形横着或者竖着去覆盖更大的矩形。请问用 n 个 2*1 的小矩形无重叠地覆盖一个 2*n 的大矩形,总共有多少种方法?注意:约定 n == 0 时,输出 0。
解题思路
当 n 为 1 时,只有一种覆盖方法:
当 n 为 2 时,有两种覆盖方法:
要覆盖 2*n 的大矩形,可以先覆盖 2*1 的矩形,再覆盖 2*(n-1) 的矩形;或者先覆盖 2*2 的矩形,再覆盖 2*(n-2) 的矩形。而覆盖 2*(n-1) 和 2*(n-2) 的矩形可以看成子问题。该问题的递推公式如下:
【C++解法】
class Solution {
public:
int rectCover(int number) {
int f1 = 1, f2 =2, fn = number;
for(int i=3; i<=number; i++) {
fn = f1+f2;
f1 = f2;
f2 = fn;
}
return fn;
}
};
【C解法】
int rectCover(int number ) {
int f1 = 1, f2 = 2, fn = number;
for (int i = 3; i <= number; i++) {
fn = f1 + f2;
f1 = f2;
f2 = fn;
}
return fn;
}
【Java解法】
public class Solution {
public int rectCover(int target) {
int f1 = 1, f2 = 2, fn = target;
for (int i = 3; i <= target; i++) {
fn = f1 + f2;
f1 = f2;
f2 = fn;
}
return fn;
}
}