LeetCode-10. Regular Expression Matching [C++][Java]

LeetCode-10. Regular Expression Matchingicon-default.png?t=M276https://leetcode.com/problems/regular-expression-matching/

题目描述

Given an input string s and a pattern p, implement regular expression matching with support for '.' and '*' where:

  • '.' Matches any single character.​​​​
  • '*' Matches zero or more of the preceding element.

The matching should cover the entire input string (not partial).

Example 1:

Input: s = "aa", p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".

Example 2:

Input: s = "aa", p = "a*"
Output: true
Explanation: '*' means zero or more of the preceding element, 'a'. Therefore, by repeating 'a' once, it becomes "aa".

Example 3:

Input: s = "ab", p = ".*"
Output: true
Explanation: ".*" means "zero or more (*) of any character (.)".

Constraints:

  • 1 <= s.length <= 20
  • 1 <= p.length <= 30
  • s contains only lowercase English letters.
  • p contains only lowercase English letters, '.', and '*'.
  • It is guaranteed for each appearance of the character '*', there will be a previous valid character to match.

解题思路

【C++】

1. 动态规划

class Solution {
public:
    bool isMatch(string s, string p) {
        int m = s.size(), n = p.size();
        vector<vector<bool>> dp(m +1, vector<bool>(n + 1, false));
        dp[0][0] = true;
        for (int i = 1; i < n + 1; ++i) {
            if (p[i-1] == '*') {
                dp[0][i] = dp[0][i-2];
            }
        }
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (p[j-1] == '.') {
                    dp[i][j] = dp[i-1][j-1];
                } else if (p[j-1] != '*') {
                    dp[i][j] = dp[i-1][j-1] && s[i-1] == p[j-1];
                } else if (p[j-2] != s[i-1] && p[j-2] != '.') {//p[j-1] = '*'
                    dp[i][j] = dp[i][j-2];
                } else { //p[j-1] == '*' && (s[i-1] == p[j-2] || p[j-2] == '.')
                    dp[i][j] = dp[i][j-1] || dp[i][j-2] || dp[i-1][j];
                }
            }
        }
        return dp[m][n];
    }
};

2. 递归

class Solution {
public:
    bool isMatch_i(string &s, string &p, int start_s, int start_p) {
        int si = start_s, pi = start_p;
        while (pi < p.length()) {
            if (pi + 1 < p.length() && p[pi+1] == '*') {
                if (p[pi] == '*') {return false;}
                while (si < s.length() && (s[si] == p[pi] || p[pi] == '.')) {
                    if (isMatch_i(s, p, si, pi+2)) {return true;}
                    si++;
                }
                if(isMatch_i(s, p, si, pi+2)) {return true;}
                return false;
            } else if (si==s.length()) {return false;}
            else if (s[si]==p[pi] || p[pi]=='.') {
                si++;
                pi++;
            } else {return false;}
        }
        return (si==s.length());
    }

    bool isMatch(string s, string p) {
        return isMatch_i(s, p, 0, 0);
    }
};

【Java】

class Solution {
    public boolean isMatch(String s, String p) {
        int m = s.length(), n = p.length();
        boolean[][] dp = new boolean[m + 1][n + 1];
        dp[0][0] = true;
        for (int i = 1; i < n + 1; ++i) {
            if (p.charAt(i-1) == '*') {
                dp[0][i] = dp[0][i-2];
            }
        }
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (p.charAt(j-1) == '.') {
                    dp[i][j] = dp[i-1][j-1];
                } else if (p.charAt(j-1) != '*') {
                    dp[i][j] = dp[i-1][j-1] && s.charAt(i-1) == p.charAt(j-1);
                } else if (p.charAt(j-2) != s.charAt(i-1) && p.charAt(j-2) != '.') {//p[j-1] = '*'
                    dp[i][j] = dp[i][j-2];
                } else { //p[j-1] == '*' && (s[i-1] == p[j-2] || p[j-2] == '.')
                    dp[i][j] = dp[i][j-1] || dp[i][j-2] || dp[i-1][j];
                }
            }
        }
        return dp[m][n];
    }
}

### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贫道绝缘子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值