ACM常见组合博弈游戏

这篇博客介绍了多个组合博弈游戏,包括Ferguson游戏、chomp!游戏、约数游戏、Bash博弈、Wythoff’s Game和斐波那契博弈等。每种游戏都详细阐述了规则、解决策略和证明,适合ACM竞赛爱好者和博弈论学习者。
摘要由CSDN通过智能技术生成

这两天认识了几个组合游戏的基础模型,希望自己能更新下去。。

Ferguson游戏

Description

  • Initial

有两个盒子,一个装有 m 颗糖,一个装有 n 颗糖,表示为 (m, n) .

  • Step

每次清空一个盒子,将另一个盒子里的糖转移一些过来,并保证两个盒子至少各有一颗糖。

  • Win

最后进行转移糖者胜,无法转移糖者败。

Solve

m, n 都为奇数,先手败;m, n 至少一个为偶数,先手胜。

Proof

显然,初始状态为(1, 1),先手必败;

  • 设 max(m, n) = 2,即初始状态为 (1, 2),(2, 1) 或 (2, 2),对于 (1, 2),(2, 1) 先手可以把 1 清空,然后将 2 分为 (1, 1) ,先手胜;对于 (2, 2) ,先手可以把其中一个 2 清空,然后将另一个 2 分为 (1, 1) ,先手胜。符合结论。

  • 设 max(m, n) < k 均符合结论,当 max(m, n) = k :

    • 设 m 与 n 至少一个为偶数(假设m是偶数),则将 n 清空,把 m 分为两个奇数 (a, b) ,由于max(a, b) < k ,因此(a, b) 必败,(m, n) 必胜(利用规则2);

    • 设 m 与 n 均为奇数,则只能把其中一个数分为一个奇数 a ,一个偶数 b ,由于max(a, b) < k ,因此对于任何的方式分解出的(a, b) 均必胜,(m, n) 必败(利用规则1);

    • 故 max(m, n) = k 符合结论。

  • 故对于任意 (m, n) 结论成立。

chomp!游戏

Description

  • Initial

有一个 m * n 的棋盘,棋盘的每一个格子用(x, y)表示,最左下角是(1, 1),最右上角是(m, n) ;

  • Step

每次可以拿走一个方格,并拿走该方格右边与上边的所有方格。

  • Win

谁拿到(1, 1)谁败。

Solve

当 m = n = 1,先手败;除此之外,先手均有必胜策略(先手胜)。

Proof

反证法:

假设后手能取得胜利,那么先手可以第一步拿走(m, n),若后续回合内后手通过拿走(x, y)达到了必胜状态,先手均可以第一步就拿走(x, y)来达到必胜状态。
故不存在后手必胜状态。

由于无法给出构造性证明,所以只能证明先手必胜,而不能给出广义的必胜策略。

约数游戏

Description

  • Initial

桌上有 n 个数字:1~n。

  • Step

两人轮流在选择一个桌上的数 x ,然后将 x 与 x 的约数都拿走。

  • Win

拿去最后一个数的人胜出(无法选择数字的人失败)。

Solve

先手有必胜策略。(先手胜)

Proof

这个游戏是 chomp! 的思想的应用。

假设后手能取得胜利,那么先手可以第一步拿走 1,若后续回合内后手通过拿走 x 达到了必胜状态,先手均可以第一步就拿走 x 来达到必胜状态。

Bash Game(巴什博弈)

Description

  • Initial

n 个物品堆成一堆。

  • Step

两个人轮流从这堆物品中取物,规定每次至少取一个,最多取 m 个。

  • Win

最后取光者得胜。(无法取者败)

Solve

如果 n % (m+1)0 ,则先手必胜。

Proof

  • 如果 n=m+1 , 显然,先手无论取多少,后手均可以将剩余物品一次全取走,所以先手败。

  • 如果 n=k(m+1) ,我们从后手的角度来考虑,设先手第一次取走 x 个物品,那么后手只要再取走 m+1x 个,此时剩余物品数量变为 (k1)(m+1) 个,一直重复这个步骤,就可以回到先手面临 n=m+

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值