ECG ×AI: 机器/深度学习的ECG应用入门(1)

本文分享了ECG算法的基础知识及实践经验,包括数据库获取、QRS波定位、传统与深度机器学习等方面的内容,旨在帮助初学者快速上手。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

 
你好,我是研究ECG算法的搬砖工Winham。目前搞这个方向已经挺长时间了,总想着把自己的一些入门经验分享一下,却不知道从何下手。说实话,关于ECG算法的研究相对冷门一些,网络上系统的资料也比较少,有的多是故作高深的论文。想想当时入门时真是走了不少弯路,也真心体会到如果能有一个相对系统一点的教程或是博客,再配合一些可以直接上手的代码,对于初学者来说是很重要的。所以写了这几篇渣文,内容简短,简单,都是这个方向的基础。不求大家看了觉得多好,只求可以让初学的童鞋少走一点弯路。涉及到的代码也都开源了,放在了我的github上:https://github.com/Aiwiscal/ECG-ML-DL-Algorithm-Matlab 。代码为Matlab写成。由于涉及到了机器/深度学习,建议还是有这方面的知识比较好。说起机器/深度学习,Python更适合一点,后续Python版本的代码也会放出来。不过就本人体验来说,入门的话,还是Matlab更适合一些。
ECG,是electrocardiogram的缩写。就是我们平时常见的心电图。典型的心电信号由P波,QRS波,T波等一系列特征波组成,它们以及一些特征段(QRS间期,ST段,PR段等)包含着丰富的病理信息:
医生就是通过分析这些波形的特点,结合自己的经验给出诊断结果。近几年,随着人工智能的兴起,“智能医疗”的概念也火了起来。说白了,就是用一些机器学习或深度学习算法,学习数据中的规律,能够像医生一样给出一个准确的诊断结果。想象一下,其实这件事情如果真做成了,那自然是一件大好事,毕竟医疗资源是很紧缺的。不过目前挑战还是很大的……有点扯远了,还是说回ECG。我们的目的,就是研究如何有效利用机器/深度学习算法以及一些数字信号处理算法,使用ECG信号,实现对一些心血管异常的诊断。
接下来的几部分将会从数据库的获取,QRS波定位,传统机器学习,深度学习四个方面对算法的设计和应用进行探讨,所涉及内容均为基础,并有配套源代码,并且推荐了一部分代表性文献供研究。有些地方可能会有错误和疏漏,请谅解。另外,算法的设计,有时候很依赖于个人的经验,其具体原理很难阐述地非常清楚,需要长时间积累才能领会。希望大家好运!
 

 

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值