4-梯度为零

这篇博客探讨了人工智能中数学的基础作用,重点讲解了如何利用高等数学求取极值,强调一阶梯度为0并不确保极值,需要通过二阶梯度判断。同时,解释了随机梯度下降法在拟合曲线时的误差和效率考量。此外,还提到了线性代数中的特征向量和特征值在人工智能领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、本质上就是高等数学最基础的求极值,一阶梯度为0不一定是极值,还需要判断二阶梯度,就这么直接简单,大于0极大值,小于0极小值,等于0不确定可能大可能小,就是鞍点。
2、随机梯度下降就是用第一项去拟合曲线,这个是存在误差的,但是后面的海森矩阵计算复杂度太高了,所以这样近似相加比高。
3、剩下的就是线性代数的基本知识,特征向量和特征值。整个就是数学在人工智能领域的一个应用而已。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值