不定期更新---面试题目

一、死锁产生的原因

1、根本原因:多个进程间竞争资源导致的阻塞现象

2、产生条件:

 (1)、互斥---某一个资源在同一时刻只能有一个进程占用

 (2)、请求与保持条件--进程占用资源的同时提出新的请求

 (3)、不剥夺条件---进程在占用资源且没有完成之前,不能被剥夺,只能在完成时释放

 (4)、环路等待条件---多个进程间环形等待资源

3、预防方案:打破产生条件其一

(1)、互斥条件通常是无法破坏的

       Ⅰ、破坏“占有并等待”条件

             ① 创建进程时,要求它申请所需的全部资源,系统或满足其所有要求,或什么也不给它(一次性分配”方案)

             ②要求每个进程提出新的资源申请前,释放它所占有的资源

       Ⅱ、破坏“不可抢占”条件

             ①如果占有某些资源的一个进程进行进一步资源请求被拒绝,则该进程必须释放它最初占有的资源,如果有必要,可再次请求这些资源和另外的资源。

            ②如果一个进程请求当前被另一个进程占有的一个资源,则操作系统可以抢占另一个进程,要求它释放资源。只有在任意两个进程的优先级都不相同的条件下

       Ⅲ、破坏“循环等待”条件

              ①将系统中的所有资源统一编号,进程可在任何时刻提出资源申请,但所有申请必须按照资源的编号顺序(升序)提出

4、避免死锁---银行家算法(不破坏四个条件):在银行中,客户申请贷款的数量是有限的,每个客户在第一次申请贷款时要声明完成该项目所需的最大资金量,在满足所有贷款要求时,客户应及时归还。银行家在客户申请的贷款数量不超过自己拥有的最大值时,都应尽量满足客户的需要。在这样的描述中,银行家就好比操作系统,资金就是资源,客户就相当于要申请资源的进程。

5、检测死锁

  (1)、构建资源分配图---深度优先遍历算法确定是否存在环路:依次将每一个节点作为一棵树的根节点,并进行深度优先搜索,如果再次碰到已经遇到过的节点,那么就算找到了一个环。如果从任何给定的节点出发的弧都被穷举了,那么就回溯到前面的节点。如果回溯到根并且不能再深入下去,那么从当前节点出发的子图中就不包含任何环。如果所有的节点都是如此,那么整个图就不存在环也就是说系统不存在死锁

  (2)、构建向量矩阵---利用向量矩阵算法模拟资源分配。这种算法的第一步是寻找可以运行完毕的进程Pi,该进程的特点是它有资源请求并且该请求可被当前的可用资源满足(R矩阵第i行向量小于A)。这一选中的进程随后就被运行完毕,在这段时间内它释放自己持有的所有资源并将它们返回到可用资源库中(将C矩阵的第i行向量加到A)。然后这一进程被标记为完成。如果所有的进程最终都能运行完毕的话,就不存在死锁的情况。
6、死锁恢复

 (1)、进程终止:简单地终止一个或多个进程以打破循环等待

      Ⅰ、终止所有死锁进程。

      Ⅱ、一次只终止一个进程直到取消死锁循环为止。

 (2)、资源抢占:从一个或多个死锁进程那里抢占一个或多个资源

       Ⅰ、选择一个牺牲品

       Ⅱ、回滚

       Ⅲ、饥饿(在代价因素中加上回滚次数,回滚的越多则越不可能继续被作为牺牲品)

二、list, vector, map, set的区别和实现(面试只提到了区别)

三、多态

  (1)、字面上理解多态:多种状态,具体体现一个接口多种状态,多种状态指的是:实现方法不一样,对于不同的对象(有血缘关系的对象---允许将子类类型的指针赋值给父类类型的指针),接口的多种不同的实现方式即为多态。

 例如:

class A
{
    virtual void init() = 0;
    virtual ~A() = 0;
}

class B : public A
{
public:
    virtual  void init() override
    {
        printf("B");
    }

}

class C : public A
{
public:
    virtual  void init() override
    {
        printf("C");
    }
}


A  *a = new B();
A  *b = new C(); 



当class A不是纯虚类的时候,如果去掉virtual , 那么a,b调用init的时候会调用A::init(), 只在父类加virtual,子类添加也能达到多态的效果,(因此如果用父类对象指向子类指针 析构函数必须加virtual)但是为了子类函数可读性,最好加上 virtual 和override

对于a, b,都是实例化出来不同的对象,外部调用a,b的init时候,会分别调用B::inti(), C::init();  这个在面向接口编程是很常见

(2)、实现方法:虚函数抽象类,覆盖,模板(重载和多态无关)

             实现条件:继承、虚函数、父类引用指向子类指针

 Ⅰ、虚函数+覆盖

class A
{
public:
    A() {}
    virtual void init() { std::cout << "A"<< endl; }
};

class B : public A
{
public:
    B() {}
    virtual void init() override { std::cout << "B"<<endl; }
};

class C : public A
{
public:
    C() {}
    virtual void init() override { std::cout << "C" << endl; }
};

Ⅱ、抽象类+覆盖

class A
{
public:
    A() {}
    virtual void init() = 0;
};

class B : public A
{
public:
    B() {}
    virtual void init() override { std::cout << "B"<<endl; }
};

class C : public A
{
public:
    C() {}
    virtual void init() override { std::cout << "C" << endl; }
};

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值