机器学习
文章平均质量分 84
随遇而安_小强
这个作者很懒,什么都没留下…
展开
-
详解熵、最大熵、联合熵和条件熵、相对熵以及互信息之间的关系
信息量的定义某事件发生的概率小,则该事件的信息量大。 定义随机变量XXX的概率分布为P(X)P(X)P\left( X \right),XXX的信息量为:h(X)=−log2P(X)h(X)=−log2P(X)h\left( X \right) = - {\log _2}P\left( X \right).熵对随机事件按的信息量求期望,得到随机变量XXX的熵: H(X)=−∑...原创 2018-07-03 19:06:15 · 11387 阅读 · 2 评论 -
机器学习sklearn中常见的线性模型参数释义
from sklearn.linear_model import LinearRegressionLinearRegression(fit_intercept=True,normalize=False,copy_X=True,n_jobs=1)'''参数含义:1.fit_intercept:布尔值,指定是否需要计算线性回归中的截距,即b值。如果为False,那么不计算b值。2.nor...原创 2018-07-05 16:14:31 · 7722 阅读 · 1 评论 -
机器学习sklearn中决策树模型参数释义
'''scikit-learn中有两类决策树,它们均采用优化的CART决策树算法。'''from sklearn.tree import DecisionTreeRegressor'''回归决策树'''DecisionTreeRegressor(criterion="mse", splitter="best", ...原创 2018-07-07 19:26:56 · 26344 阅读 · 4 评论 -
PyMC3中常见连续概率分布
连续分布1.均匀分布class pymc3.distributions.continuous.Uniform(lower = 0,upper = 1,* args,** kwargs )均匀分布的概率密度函数为:import numpy as npimport matplotlib.pyplot as pltplt.style.use('seaborn-darkgrid...翻译 2018-08-07 15:11:57 · 4105 阅读 · 0 评论