启发式算法教程(个人总结版)

1. 引言

1.1 什么是启发式算法

启发式算法是一类用于寻找复杂优化问题近似解的方法,特别适用于在计算资源有限的情况下求解大型问题。与精确算法不同,启发式算法不保证找到全局最优解,但能在可接受的时间内提供一个质量较高的解。

1.2 启发式算法的应用领域

启发式算法广泛应用于诸多领域,包括但不限于:

  • 工程设计:如结构优化和电路设计。
  • 生产调度:如车间作业调度和生产计划优化。
  • 物流配送:如车辆路径优化和仓库选址。
  • 网络优化:如网络路由和拓扑设计。
  • 机器学习:如参数调优和特征选择。
1.3 启发式算法与精确算法的区别

精确算法(如动态规划、线性规划)能在有限时间内找到问题的最优解,但其计算复杂度较高,难以应对大规模问题。启发式算法通过经验和启发式规则,在合理时间内找到近似最优解,具有计算速度快、适应性强的优点。

2. 启发式算法的类型及基本概念

2.1 局部搜索算法

局部搜索算法从一个初始解出发,通过邻域搜索找到更好的解,直到没有更好的邻域解。

  • 基本概念:解空间、邻域结构、局部最优解。
  • 应用实例:解决旅行商问题(TSP)。
  • 算法实现
    def local_search(schedule):
        best_schedule = schedule
        best_cost = calculate_cost(schedule)
        while True:
            neighbors = generate_neighbors(schedule)
            improved = False
            for neighbor in neighbors:
                cost = calculate_cost(neighbor)
                if cost < best_cost:
                    best_schedule = neighbor
                    best_cost = cost
                    improved = True
            if not improved:
                break
        return best_schedule, best_cost
    
2.2 模拟退火算法

模拟退火算法模拟物理退火过程,通过控制温度逐渐降低的策略寻找全局最优解。

  • 基本概念:退火过程、温度控制策略、接受概率。
  • 应用实例:生产调度问题。
  • 算法实现
    import random
    import math
    
    def simulated_annealing(tsp, initial_temp, cooling_rate, stop_temp):
        current_solution = random.sample(tsp, len(tsp))
        current_temp = initial_temp
        best_solution = current_solution
        best_cost = calculate_cost(current_solution)
    
        while current_temp > stop_temp:
            new_solution = generate_new_solution(current_solution)
            new_cost = calculate_cost(new_solution)
            if new_cost < best_cost or accept_new_solution(best_cost, new_cost, current_temp):
                current_solution = new_solution
                best_cost = new_cost
                best_solution = current_solution
            current_temp *= cooling_rate
        return best_solution, best_cost
    
    def calculate_cost(solution):
        cost = 0
        for i in range(len(solution) - 1):
            cost += distance(solution[i], solution[i+1])
        cost += distance(solution[-1], solution[0])
        return cost
    
    def generate_new_solution(solution):
        new_solution = solution[:]
        i, j = random.sample(range(len(solution)), 2)
        new_solution[i], new_solution[j] = new_solution[j], new_solution[i]
        return new_solution
    
    def accept_new_solution(best_cost, new_cost, temp):
        return math.exp((best_cost - new_cost) / temp) > random.random()
    
    def distance(city1, city2):
        return math.sqrt((city1[0] - city2[0])**2 + (city1[1] - city2[1])**2)
    
    tsp = [(0, 0), (1, 2), (3, 5), (6, 1), (7, 7), (8, 8), (10, 10)]
    initial_temp = 1000
    cooling_rate = 0.995
    stop_temp = 1
    best_solution, best_cost = simulated_annealing(tsp, initial_temp, cooling_rate, stop_temp)
    print(f"最优路径: {best_solution}, 最短距离: {best_cost}")
    
2.3 遗传算法

遗传算法通过模拟生物进化过程,通过选择、交叉、变异等操作优化种群,寻找最优解。

  • 基本概念:种群、适应度函数、选择、交叉、变异。
  • 应用实例:机器学习中的特征选择。
  • 算法实现
    import random
    
    def genetic_algorithm(func, bounds, pop_size, generations, crossover_rate, mutation_rate):
        population = [random_individual(bounds) for _ in range(pop_size)]
        best_individual = max(population, key=lambda ind: func(ind))
    
        for _ in range(generations):
            selected = selection(population, func)
            offspring = crossover(selected, crossover_rate)
            population = mutation(offspring, mutation_rate, bounds)
            current_best = max(population, key=lambda ind: func(ind))
            if func(current_best) > func(best_individual):
                best_individual = current_best
    
        return best_individual
    
    de
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱吃辣椒的年糕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值