购买意向建模-数据清洗

背景:
需要根据用户的问卷提炼特征,进行建模预测用户的购买意向。但是实际情况是一部分是历史数据嘈乱、而且问卷形式的收集数据,部分用户填写随意不具备参考意义。

# -*- coding: utf-8 -*-
"""

"""
#1.数据预处理


import pandas as pd
import os
from scipy.interpolate import lagrange

data = pd.read_csv("My Notebook.csv")

# dropna删除 nan值
# print(data.dropna())

# fillna填补默认值
# print(data.fillna(0))

data = data.fillna(0)


# 数据插补
# 一般插值法,包含拉格朗日插值法、牛顿插值法、Hermite插值、分段插值、样条插值等。这里采用拉格朗日插值的函数

#过滤异常值,将其变为空值
data[u'a.self_income'][(data[u'a.self_income']<10000) | (data[u'a.self_income']>999999)] = None
data[u'a.spouse_income'][(data[u'a.spouse_income']<10000) | (data[u'a.spouse_income']>999999)] = None
data[u'a.insurance_budget'][(data[u'a.insurance_budget']<10) & (data[u'a.insurance_budget']>0)] = data[u'a.insurance_budget']*10000
data[u'a.insurance_budget'][(data[u'a.insurance_budget']<10000) | (data[u'a.insurance_budget']>999999)] = None


data= data.dropna()
print(data)


pd.DataFrame(data).to_csv("qinxi.csv")

做了简单的过滤判断去除异常值,当然大家可以采用数据分布查看,例如聚类分析,查看离群点

在MATLAB中进行数学建模数据清洗有以下步骤和技术: 1. 模型构建:使用MATLAB提供的数学建模工具箱和函数,可以根据具体问题构建数学模型。根据引用中提到的,可以构建线性和非线性模型、静态和动态模型、连续和离散模型等。 2. 数据准备:在进行数学建模之前,需要对原始数据进行清洗和预处理。MATLAB具有强大的数据分析和预处理功能,可以方便地进行数据清洗、转换和分析。根据引用中提到的,可以使用MATLAB对数据进行清洗、转换和分析,以便后续建模和分析。 3. 数据清洗数据清洗是指对原始数据进行处理,去除冗余、不完整或错误的数据,以保证数据的质量和准确性。在MATLAB中,可以使用各种数据清洗技术,例如去除缺失值、异常值和重复值等。 4. 数据转换:数据转换是指对原始数据进行变换,以满足建模和分析的需求。在MATLAB中,可以使用各种数据转换技术,例如数据标准化、归一化、平滑和插值等。 综上所述,MATLAB提供了丰富的数学建模和数据分析工具,可以方便地进行数学建模数据清洗。根据引用和引用中提到的步骤和技术,可以在MATLAB中进行数学建模和清洗数据。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [MATLAB在数学建模中的应用(附源码)](https://blog.csdn.net/qq_51533426/article/details/130311020)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值