题目描述:
有两种特殊字符。第一种字符可以用一比特0
来表示。第二种字符可以用两比特(10
或 11
)来表示。
现给一个由若干比特组成的字符串。问最后一个字符是否必定为一个一比特字符。给定的字符串总是由0结束。
示例 1:
输入: bits = [1, 0, 0] 输出: True 解释: 唯一的编码方式是一个两比特字符和一个一比特字符。所以最后一个字符是一比特字符。
示例 2:
输入: bits = [1, 1, 1, 0] 输出: False 解释: 唯一的编码方式是两比特字符和两比特字符。所以最后一个字符不是一比特字符。
注意:
1 <= len(bits) <= 1000
.bits[i]
总是0
或1
.
解题思路:
这个题目一开始我的思路是只看最后4个数,然后一共8种情况分情况讨论,后来发现有些情况的答案是不确定的,需要看更多的数才能决定,后来上网看了一下别人的思路觉得很好,思路如下:
由于10, 11两个编码都是以1开头的,这意味着只要是以1开头的后面一个数必定是根这个1一起的字符编码。利用这一点:
用一个指针从前向后走,遇到1就走两步,遇到0就走一步,看最后是不是走到n-1的位置,说明最后的0只能是单独存在的,否则走到n的位置就说明这个0是跟前面的1一起的。
代码实现(Java语言):
class Solution {
public boolean isOneBitCharacter(int[] bits) {
int i = 0;
for(i = 0;i < bits.length - 1;){
if(bits[i] == 0){
i++;
}else
i += 2;
}
System.out.println(i);
return (i == bits.length-1)?true:false;
}
}