推荐系统是互联网的增长引擎
推荐系统的作用和意义
用户角度
- 信息过载
- 需求不明确
- 高效获取感兴趣的信息
公司角度
- 吸引客户
- 留存客户
- 增加用户黏性
- 提高用户转化率
以达成公司的商业目标为目的
推荐系统与YouTube观看时长
用户和公司利益相统一
YouTube全球重大的UGC(User Generated Content)视频分享平台
推荐系统与电商网站
千人千面
推荐系统的架构
1)企业的核心需求是增长,推荐系统在增长引擎的核心位置
2)推荐系统解决的用户通电
- 用户信息
- 物品信息
- 场景信息
推荐系统的逻辑架构
构建一个函数f(U,I,C)
对于用户U,在特定的场景下,针对海量的物品信息,预测用户对特定候选物品I的喜好程度
推荐系统的技术架构
(1)数据和信息相关的问题
(2)算法和模型相关的问题
推荐系统的数据部分
三种不同的数据处理方式
实时性不同 对海量数据的处理能力不同
数据的出口:
(1)样本数据, 用于训练和评估
(2)生成特征,用于线上推断
(3) 系统监控、商业智能(BI)
推荐系统的模型部分
- 召回层
使用高效的召回规则、简单的模型从海量候选集中召回可能的物品
- 排序层
使用排序模型对初筛的候选集进行精排序
- 补充策略与算法层(再排序层)
结合多样性、流行度、新鲜度等指标
离线训练
利用全量的样本和特征,模型逼近全局最优点
在线更新
准实时利用新的数据样本,反映变化趋势
评估
- 离线评估
- A/B测试
深度学习对推荐系统的革命性贡献
拟合能力和特征组合能力
结构灵活
难点:
数据的实时获取与处理