欧拉回路 欧拉通路 欧拉回路图

来源

一、定义

对于无向图:
  1) 设G是连通无向图,则称经过G的每条边一次并且仅一次的路径为欧拉通路;
  2) 如果欧拉通路是回路(起点和终点是同一个顶点),则称此回路为欧拉回路(Euler circuit);
  3) 具有欧拉回路的无向图G称为欧拉图(Euler graph)。
对于有向图:
  1) 设D是有向图,D的基图连通,则称经过D的每条边一次并且仅一次的有向路径为有向欧拉通路;
  2) 如果有向欧拉通路是有向回路,则称此有向回路为有向欧拉回路(directed Euler circuit);
  3) 具有有向欧拉回路的有向图D称为有向欧拉图(directed Euler graph)。

二、定理

无向图:
  无向图G存在欧拉通路的充要条件是:G为连通图,并且G**仅有两个奇度结点(度数为奇数的顶点)或者无奇度结点**。
推论:
  1) 当G是仅有两个奇度结点的连通图时,G的欧拉通路必以此两个结点为端点。
  2) 当G是无奇度结点的连通图时,G必有欧拉回路。
  3) G为欧拉图(存在欧拉回路)的充分必要条件是G为无奇度结点的连通图。
有向图:
  D为有向图,D的基图连通,并且所有顶点的出度与入度都相等;或者除两个顶点外,其余顶点的出度与入度都相等,而这两个顶点中一个顶点的出度与入度差为1,另一个顶点的出度与入度之差为-1
推论:
  1) 当D除出、入度之差为1,-1的两个顶点之外,其余顶点的出度与入度都相等时,D的有向欧拉通路必以出、入度之差为1的顶点作为始点,以出、入度之差为-1的顶点作为终点。
  2) 当D的所有顶点的出、入度都相等时,D中存在有向欧拉回路。
  3) 有向图D为有向欧拉图的充分必要条件是D的基图为连通图,并且所有顶点的出、入度都相等。

三、算法

连通性:
  采用深度搜索,如果有节点没有访问,说明不连通。

void DFS(int cur)                     //连通性的判断  是否完全访问掉
{
    int i ;
    for(i = 0; i<n; i++)
    {
        if(!vis[i]&&edge[cur][i])
        {
            vis[i] = 1;
            DFS(i);
        }
    }
}
    DFS(0);
    for(int i =0; i<n; i++)
    {
        if(!vis[i])
            return false;
    }  

欧拉图判断:

# 无向欧拉图:
 for(int i =0; i<n; i++)
 {
     if(degree[i]%2)
     {
         return false;
     }
 }
# 有向欧拉图:
 for (int i=0; i<n; i++)
    if (in[i] != out[i])
    {
        return false;
    }

路径查找:

// 无向图的欧拉回路, cur 点, 从 pos 点开始搜
void DFS_two(int cur,int pos)
{
    int i,a,b;
    stack[top++] = cur;
    for(i = pos;i<n;i++)
    {
        if(edge[cur][i] != 0)
        {
            edge[i][cur] = 0;
            edge[cur][i] = 0;
            degree[cur]--;
            degree[i]--;
            DFS_two(i,0);
            break;
        }
    }
    if(i==n && top<n)  // 走投无路, 而且还有边的时候, 退回一步
    {
        b = stack[--top];
        a = stack[--top];
        edge[a][b] = 1;
        edge[b][a] = 1;
        degree[a]++;
        degree[b]++;
        DFS_two(a,b+1);
    }

}
// 有向图的欧拉回路, 在 cur 点, 从 pos 点开始搜
void DFS_first(int cur ,int pos)
{
    int i,a,b;
    stack[top++] = cur;
    for(i = pos;i<n;i++)
    {
        if(edge[cur][i] != 0)
        {
            edge[cur][i] = 0;
            out[cur]--;
            in[i]--;
            DFS_first(i,0);
            break;
        }
    }
    if(i==n && top<n)  // 走投无路, 而且还有边的时候, 退回一步
    {
        b = stack[--top];
        a = stack[--top];
        edge[a][b] = 1;
        out[a]++;
        in[b]++;
        DFS_first(a,b+1);
    }
}

所有代码:

#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;
const int MAX = 60;
int edge[MAX][MAX];
int degree[MAX];
int in[MAX],out[MAX];
int n,type;                           //judge  grape 类型
int e;                                //边数
int top;                              // 栈底  初始化为 0;
int stack[MAX];                       //记录欧拉通路的路径
int vis[MAX];                         //是否已经访问;
void DFS(int cur)                     //连通性的判断  是否完全访问掉
{
    int i ;
    for(i = 0; i<n; i++)
    {
        if(!vis[i]&&edge[cur][i])
        {
            vis[i] = 1;
            DFS(i);
        }
    }
}


// 判断是否存在欧拉回路:
// 无向图中: 连通图且所有顶点度数为偶数
// 有向图中: 连通图且所有顶点的入度等于出度
bool judge()
{
    memset(vis,0,sizeof(vis));        //访问初始化
    DFS(0);
    for(int i =0; i<n; i++)
    {
        if(!vis[i])
            return false;
    }                            //连通性的判断  是否完全访问掉
    if(type)                     //有向图
    {
        for (int i=0; i<n; i++)
            if (in[i] != out[i])
            {
                return false;
            }
    }
    else                           //无向图
    {
        for(int i =0; i<n; i++)
        {
            if(degree[i]%2)
            {
                return false;
            }
        }
    }
    return true;
}
// 有向图的欧拉回路, 在 cur 点, 从 pos 点开始搜
void DFS_first(int cur ,int pos)
{
    int i,a,b;
    stack[top++] = cur;
    for(i = pos;i<n;i++)
    {
        if(edge[cur][i] != 0)
        {
            edge[cur][i] = 0;
            out[cur]--;
            in[i]--;
            DFS_first(i,0);
            break;
        }
    }
    if(i==n && top<n)  // 走投无路, 而且还有边的时候, 退回一步
    {
        b = stack[--top];
        a = stack[--top];
        edge[a][b] = 1;
        out[a]++;
        in[b]++;
        DFS_first(a,b+1);
    }
}
// 无向图的欧拉回路, cur 点, 从 pos 点开始搜
void DFS_two(int cur,int pos)
{
    int i,a,b;
    stack[top++] = cur;
    for(i = pos;i<n;i++)
    {
        if(edge[cur][i] != 0)
        {
             edge[i][cur] = 0;
            edge[cur][i] = 0;
degree[cur]--;
degree[i]--;
            DFS_two(i,0);
            break;
        }
    }
    if(i==n && top<n)  // 走投无路, 而且还有边的时候, 退回一步
    {
        b = stack[--top];
        a = stack[--top];
        edge[a][b] = 1;
        edge[b][a] = 1;
        degree[a]++;
        degree[b]++;
        DFS_two(a,b+1);
    }

}
int main()
{
    printf("0, 无向图    1, 有向图 : ");
    scanf("%d", &type);
    printf("输入顶点个数: ");
    scanf("%d",&n);
    memset(edge,0,sizeof(edge));
    memset(degree,0,sizeof(degree));  //无向图的度数
    memset(in,0,sizeof(in));          //有向图的入度
    memset(out,0,sizeof(out));        //有向图的出度

    while(true)
    {
        int a,b;                      //边集
        scanf("%d %d",&a,&b);
        if(!(a||b))                   //  0 0 break
        {
            break;
        }
        edge[a][b] = 1;
        in[b]++;
        out[a]++;
        if(!type)                     // 如果是无向图
        {
            edge[b][a] = 1;
            degree[a]++;                   //无向图的度数
            degree[b]++;
        }
    }
    if(judge())
    {
        printf("\n一条欧拉回路: ");
        if(type)
            DFS_first(0,0);
        else
            DFS_two(0,0);
        for(int i =0; i<top; i++)
        {
            printf("%d",stack[i]);
            if(i+1!=top)
                printf(" -> ");
        }
        putchar('\n');
    }
    else
    {
        printf("\n不存在欧拉回路!\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值