一、定义
对于无向图:
1) 设G是连通无向图,则称经过G的每条边一次并且仅一次的路径为欧拉通路;
2) 如果欧拉通路是回路(起点和终点是同一个顶点),则称此回路为欧拉回路(Euler circuit);
3) 具有欧拉回路的无向图G称为欧拉图(Euler graph)。
对于有向图:
1) 设D是有向图,D的基图连通,则称经过D的每条边一次并且仅一次的有向路径为有向欧拉通路;
2) 如果有向欧拉通路是有向回路,则称此有向回路为有向欧拉回路(directed Euler circuit);
3) 具有有向欧拉回路的有向图D称为有向欧拉图(directed Euler graph)。
二、定理
无向图:
无向图G存在欧拉通路的充要条件是:G为连通图,并且G**仅有两个奇度结点(度数为奇数的顶点)或者无奇度结点**。
推论:
1) 当G是仅有两个奇度结点的连通图时,G的欧拉通路必以此两个结点为端点。
2) 当G是无奇度结点的连通图时,G必有欧拉回路。
3) G为欧拉图(存在欧拉回路)的充分必要条件是G为无奇度结点的连通图。
有向图:
D为有向图,D的基图连通,并且所有顶点的出度与入度都相等;或者除两个顶点外,其余顶点的出度与入度都相等,而这两个顶点中一个顶点的出度与入度之差为1,另一个顶点的出度与入度之差为-1。
推论:
1) 当D除出、入度之差为1,-1的两个顶点之外,其余顶点的出度与入度都相等时,D的有向欧拉通路必以出、入度之差为1的顶点作为始点,以出、入度之差为-1的顶点作为终点。
2) 当D的所有顶点的出、入度都相等时,D中存在有向欧拉回路。
3) 有向图D为有向欧拉图的充分必要条件是D的基图为连通图,并且所有顶点的出、入度都相等。
三、算法
连通性:
采用深度搜索,如果有节点没有访问,说明不连通。
void DFS(int cur) //连通性的判断 是否完全访问掉
{
int i ;
for(i = 0; i<n; i++)
{
if(!vis[i]&&edge[cur][i])
{
vis[i] = 1;
DFS(i);
}
}
}
DFS(0);
for(int i =0; i<n; i++)
{
if(!vis[i])
return false;
}
欧拉图判断:
# 无向欧拉图:
for(int i =0; i<n; i++)
{
if(degree[i]%2)
{
return false;
}
}
# 有向欧拉图:
for (int i=0; i<n; i++)
if (in[i] != out[i])
{
return false;
}
路径查找:
// 无向图的欧拉回路, cur 点, 从 pos 点开始搜
void DFS_two(int cur,int pos)
{
int i,a,b;
stack[top++] = cur;
for(i = pos;i<n;i++)
{
if(edge[cur][i] != 0)
{
edge[i][cur] = 0;
edge[cur][i] = 0;
degree[cur]--;
degree[i]--;
DFS_two(i,0);
break;
}
}
if(i==n && top<n) // 走投无路, 而且还有边的时候, 退回一步
{
b = stack[--top];
a = stack[--top];
edge[a][b] = 1;
edge[b][a] = 1;
degree[a]++;
degree[b]++;
DFS_two(a,b+1);
}
}
// 有向图的欧拉回路, 在 cur 点, 从 pos 点开始搜
void DFS_first(int cur ,int pos)
{
int i,a,b;
stack[top++] = cur;
for(i = pos;i<n;i++)
{
if(edge[cur][i] != 0)
{
edge[cur][i] = 0;
out[cur]--;
in[i]--;
DFS_first(i,0);
break;
}
}
if(i==n && top<n) // 走投无路, 而且还有边的时候, 退回一步
{
b = stack[--top];
a = stack[--top];
edge[a][b] = 1;
out[a]++;
in[b]++;
DFS_first(a,b+1);
}
}
所有代码:
#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;
const int MAX = 60;
int edge[MAX][MAX];
int degree[MAX];
int in[MAX],out[MAX];
int n,type; //judge grape 类型
int e; //边数
int top; // 栈底 初始化为 0;
int stack[MAX]; //记录欧拉通路的路径
int vis[MAX]; //是否已经访问;
void DFS(int cur) //连通性的判断 是否完全访问掉
{
int i ;
for(i = 0; i<n; i++)
{
if(!vis[i]&&edge[cur][i])
{
vis[i] = 1;
DFS(i);
}
}
}
// 判断是否存在欧拉回路:
// 无向图中: 连通图且所有顶点度数为偶数
// 有向图中: 连通图且所有顶点的入度等于出度
bool judge()
{
memset(vis,0,sizeof(vis)); //访问初始化
DFS(0);
for(int i =0; i<n; i++)
{
if(!vis[i])
return false;
} //连通性的判断 是否完全访问掉
if(type) //有向图
{
for (int i=0; i<n; i++)
if (in[i] != out[i])
{
return false;
}
}
else //无向图
{
for(int i =0; i<n; i++)
{
if(degree[i]%2)
{
return false;
}
}
}
return true;
}
// 有向图的欧拉回路, 在 cur 点, 从 pos 点开始搜
void DFS_first(int cur ,int pos)
{
int i,a,b;
stack[top++] = cur;
for(i = pos;i<n;i++)
{
if(edge[cur][i] != 0)
{
edge[cur][i] = 0;
out[cur]--;
in[i]--;
DFS_first(i,0);
break;
}
}
if(i==n && top<n) // 走投无路, 而且还有边的时候, 退回一步
{
b = stack[--top];
a = stack[--top];
edge[a][b] = 1;
out[a]++;
in[b]++;
DFS_first(a,b+1);
}
}
// 无向图的欧拉回路, cur 点, 从 pos 点开始搜
void DFS_two(int cur,int pos)
{
int i,a,b;
stack[top++] = cur;
for(i = pos;i<n;i++)
{
if(edge[cur][i] != 0)
{
edge[i][cur] = 0;
edge[cur][i] = 0;
degree[cur]--;
degree[i]--;
DFS_two(i,0);
break;
}
}
if(i==n && top<n) // 走投无路, 而且还有边的时候, 退回一步
{
b = stack[--top];
a = stack[--top];
edge[a][b] = 1;
edge[b][a] = 1;
degree[a]++;
degree[b]++;
DFS_two(a,b+1);
}
}
int main()
{
printf("0, 无向图 1, 有向图 : ");
scanf("%d", &type);
printf("输入顶点个数: ");
scanf("%d",&n);
memset(edge,0,sizeof(edge));
memset(degree,0,sizeof(degree)); //无向图的度数
memset(in,0,sizeof(in)); //有向图的入度
memset(out,0,sizeof(out)); //有向图的出度
while(true)
{
int a,b; //边集
scanf("%d %d",&a,&b);
if(!(a||b)) // 0 0 break
{
break;
}
edge[a][b] = 1;
in[b]++;
out[a]++;
if(!type) // 如果是无向图
{
edge[b][a] = 1;
degree[a]++; //无向图的度数
degree[b]++;
}
}
if(judge())
{
printf("\n一条欧拉回路: ");
if(type)
DFS_first(0,0);
else
DFS_two(0,0);
for(int i =0; i<top; i++)
{
printf("%d",stack[i]);
if(i+1!=top)
printf(" -> ");
}
putchar('\n');
}
else
{
printf("\n不存在欧拉回路!\n");
}
return 0;
}