57.【必备】洪水填充

本文的网课内容学习自B站左程云老师的算法详解课程,旨在对其中的知识进行整理和分享~

网课链接:算法讲解058【必备】洪水填充_哔哩哔哩_bilibili

一.岛屿数量 

题目:岛屿数量

算法原理

  • 算法原理概述
    • 这个算法主要是基于深度优先搜索(DFS)来计算岛屿的数量。
    • 思路是遍历整个二维网格,如果遇到一个陆地('1'),就将岛屿数量加1,然后对这个陆地进行深度优先搜索,把与它相连的所有陆地都标记为已访问(在这个算法中通过将'1'变为'0'来标记),这样就可以把一个岛屿的所有陆地都标记完。
  • 具体步骤
    • 遍历网格
      • numIslands方法中,首先获取网格的行数n和列数m
      • 然后使用两层嵌套的for循环遍历整个二维网格。
    • 发现岛屿
      • 当遇到board[i][j]=='1'时,说明发现了一个新的岛屿,此时将岛屿数量islands加1。
      • 接着调用dfs方法对这个岛屿进行深度优先搜索。
    • 深度优先搜索(dfs方法)
      • dfs方法中,首先进行边界条件判断。如果当前坐标(i, j)超出了网格范围(i < 0或者i == n或者j < 0或者j == m)或者当前位置不是陆地(board[i][j]!= '1'),就直接返回。
      • 然后将当前位置的陆地标记为已访问(board[i][j]=0)。
      • 接着递归地对上下左右四个相邻位置进行深度优先搜索,即调用dfs(board, n, m, i - 1, j)(上)、dfs(board, n, m, i+1, j)(下)、dfs(board, n, m, i, j - 1)(左)和dfs(board, n, m, i, j+1)(右)。这样就可以把与当前陆地相连的所有陆地都标记为已访问,从而确定了一个完整的岛屿。

代码实现 

// 岛屿数量
// 给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量
// 岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成
// 此外,你可以假设该网格的四条边均被水包围
// 测试链接 : https://leetcode.cn/problems/number-of-islands/
public class Code01_NumberOfIslands {

    // 洪水填充的做法
    // board : n * m
    // O(n*m)最优解!
    public static int numIslands(char[][] board) {
        int n = board.length;
        int m = board[0].length;
        int islands = 0;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (board[i][j] == '1') {
                    islands++;
                    dfs(board, n, m, i, j);
                }
            }
        }
        return islands;
    }

    public static void dfs(char[][] board, int n, int m, int i, int j) {
        if (i < 0 || i == n || j < 0 || j == m || board[i][j] != '1') {
            return;
        }
        // board[i][j] = '1'
        board[i][j] = 0;
        dfs(board, n, m, i - 1, j);
        dfs(board, n, m, i + 1, j);
        dfs(board, n, m, i, j - 1);
        dfs(board, n, m, i, j + 1);
    }

}

二.被围绕的区域

题目:被围绕的区域

算法原理

  • 算法原理概述
    • 此算法的核心思想是先标记那些不被围绕的'O'区域,然后将剩余的'O'区域转换为'X'。通过深度优先搜索(DFS)来实现对区域的标记。
  • 具体步骤
    • 边界'O'的处理
      • solve方法中,首先获取矩阵的行数n和列数m
      • 然后分别对矩阵的上下边界和左右边界进行处理。对于上边界(i = 0)和下边界(i=n - 1),遍历每一列j,如果遇到'O',就调用dfs方法进行深度优先搜索。同样,对于左边界(j = 0,除了上下角的情况)和右边界(j = m - 1,除了上下角的情况),遍历每一行i,如果遇到'O',也调用dfs方法。
    • 深度优先搜索(dfs方法)
      • dfs方法中,首先进行边界条件判断。如果当前坐标(i, j)超出了矩阵范围(i < 0或者i == n或者j < 0或者j == m)或者当前位置不是'O'(board[i][j]!= 'O'),就直接返回。
      • 然后将当前位置标记为'F'(这里'F'是一个临时标记,表示这个'O'是不被围绕的)。
      • 接着递归地对上下左右四个相邻位置进行深度优先搜索,即调用dfs(board, n, m, i + 1, j)(下)、dfs(board, n, m, i - 1, j)(上)、dfs(board, n, m, i, j + 1)(右)和dfs(board, n, m, i, j - 1)(左)。
    • 最终处理
      • solve方法的最后部分,再次遍历整个矩阵。对于每个位置(i, j),如果是'O',就将其转换为'X',因为这些'O'是被围绕的;如果是'F',就将其转换回'O',因为这些'O'是不被围绕的。

代码实现

// 被围绕的区域
// 给你一个 m x n 的矩阵 board ,由若干字符 'X' 和 'O' ,找到所有被 'X' 围绕的区域
// 并将这些区域里所有的 'O' 用 'X' 填充。
// 测试链接 : https://leetcode.cn/problems/surrounded-regions/
public class Code02_SurroundedRegions {

    public static void solve(char[][] board) {
        int n = board.length;
        int m = board[0].length;
        for (int j = 0; j < m; j++) {
            if (board[0][j] == 'O') {
                dfs(board, n, m, 0, j);
            }
            if (board[n - 1][j] == 'O') {
                dfs(board, n, m, n - 1, j);
            }
        }
        for (int i = 1; i < n - 1; i++) {
            if (board[i][0] == 'O') {
                dfs(board, n, m, i, 0);
            }
            if (board[i][m - 1] == 'O') {
                dfs(board, n, m, i, m - 1);
            }
        }
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (board[i][j] == 'O') {
                    board[i][j] = 'X';
                }
                if (board[i][j] == 'F') {
                    board[i][j] = 'O';
                }
            }
        }
    }

    public static void dfs(char[][] board, int n, int m, int i, int j) {
        if (i < 0 || i == n || j < 0 || j == m || board[i][j] != 'O') {
            return;
        }
        board[i][j] = 'F';
        dfs(board, n, m, i + 1, j);
        dfs(board, n, m, i - 1, j);
        dfs(board, n, m, i, j + 1);
        dfs(board, n, m, i, j - 1);
    }

}

三.最大人工岛

题目:最大人工岛

算法原理

  • 算法原理概述
    • 这个算法主要分为两个部分。第一部分是通过深度优先搜索(DFS)标记不同的岛屿并计算它们的面积;第二部分是遍历所有的0单元格,考虑将每个0变成1后对岛屿面积的影响,从而找到最大的岛屿面积。
  • 具体步骤
    • 标记岛屿并计算面积(第一部分)
      • largestIsland方法中,首先获取矩阵的大小n(这里n=m,因为是n * n的矩阵)。
      • 然后使用双层for循环遍历矩阵。当遇到grid[i][j] == 1时,使用dfs方法对这个岛屿进行深度优先搜索,并为这个岛屿分配一个唯一的id(从2开始,1可能用于表示原始的1单元格)。
      • dfs方法中,首先进行边界条件判断。如果当前坐标(i, j)超出了矩阵范围(i < 0或者i == n或者j < 0或者j == m)或者当前位置不是1(grid[i][j]!= 1),就直接返回。否则,将当前单元格标记为id,然后递归地对上下左右四个相邻位置进行深度优先搜索,即调用dfs(grid, n, m, i - 1, j, id)(上)、dfs(grid, n, m, i+1, j, id)(下)、dfs(grid, n, m, i, j - 1, id)(左)和dfs(grid, n, m, i, j+1, id)(右)。
      • 回到largestIsland方法,创建一个大小为id的数组sizes来存储每个岛屿的面积。再次遍历矩阵,当遇到grid[i][j]>1时(表示属于某个已标记的岛屿),将对应岛屿的面积sizes[grid[i][j]]加1,并更新最大岛屿面积ans
    • 考虑将0变成1后的面积变化(第二部分)
      • 创建一个布尔数组visited来标记某个岛屿是否已经被合并计算过。
      • 再次使用双层for循环遍历矩阵,当遇到grid[i][j] == 0时,考虑将这个0变成1后的情况。分别获取这个0单元格上下左右相邻单元格的岛屿id(如果存在的话),对于上相邻单元格up = i > 0?grid[i - 1][j]:0,下相邻单元格down = i + 1 < n?grid[i + 1][j]:0,左相邻单元格left = j > 0?grid[i][j - 1]:0,右相邻单元格right = j + 1 < m?grid[i][j + 1]:0
      • 首先将up对应的岛屿标记为已访问(visited[up]=true),计算合并后的面积merge = 1 + sizes[up](这里的1是因为将当前的0变成了1)。然后如果down对应的岛屿还没有被访问过(!visited[down]),则将其面积加入merge并标记为已访问。同样的操作对leftright进行。最后更新最大岛屿面积ans = Math.max(ans, merge),并将所有的visited标记恢复为false,以便处理下一个0单元格。

代码实现 

// 最大人工岛
// 给你一个大小为 n * n 二进制矩阵 grid 。最多 只能将一格 0 变成 1 。
// 返回执行此操作后,grid 中最大的岛屿面积是多少?
// 岛屿 由一组上、下、左、右四个方向相连的 1 形成
// 测试链接 : https://leetcode.cn/problems/making-a-large-island/
public class Code03_MakingLargeIsland {

    public static int largestIsland(int[][] grid) {
        int n = grid.length;
        int m = grid[0].length;
        int id = 2;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (grid[i][j] == 1) {
                    dfs(grid, n, m, i, j, id++);
                }
            }
        }
        int[] sizes = new int[id];
        int ans = 0;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (grid[i][j] > 1) {
                    ans = Math.max(ans, ++sizes[grid[i][j]]);
                }
            }
        }
        // 讨论所有的0,变成1,能带来的最大岛的大小
        boolean[] visited = new boolean[id];
        int up, down, left, right, merge;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (grid[i][j] == 0) {
                    up = i > 0 ? grid[i - 1][j] : 0;
                    down = i + 1 < n ? grid[i + 1][j] : 0;
                    left = j > 0 ? grid[i][j - 1] : 0;
                    right = j + 1 < m ? grid[i][j + 1] : 0;
                    visited[up] = true;
                    merge = 1 + sizes[up];
                    if (!visited[down]) {
                        merge += sizes[down];
                        visited[down] = true;
                    }
                    if (!visited[left]) {
                        merge += sizes[left];
                        visited[left] = true;
                    }
                    if (!visited[right]) {
                        merge += sizes[right];
                        visited[right] = true;
                    }
                    ans = Math.max(ans, merge);
                    visited[up] = false;
                    visited[down] = false;
                    visited[left] = false;
                    visited[right] = false;
                }
            }
        }
        return ans;
    }


    public static void dfs(int[][] grid, int n, int m, int i, int j, int id) {
        if (i < 0 || i == n || j < 0 || j == m || grid[i][j] != 1) {
            return;
        }
        //  grid[i][j] == 1
        grid[i][j] = id;
        dfs(grid, n, m, i - 1, j, id);
        dfs(grid, n, m, i + 1, j, id);
        dfs(grid, n, m, i, j - 1, id);
        dfs(grid, n, m, i, j + 1, id);
    }

}

四.打砖块

题目:打砖块

算法原理

  • 算法原理概述
    • 这个算法的核心思路是先处理所有要打击的砖块位置,将对应砖块移除(通过减1操作),然后从顶部开始进行深度优先搜索(DFS)标记稳定的砖块。之后再反向处理打击操作,将移除的砖块加回来,对于每个加回的砖块,如果它是值得掉落(即与稳定砖块相连)的,就通过DFS计算因为这个砖块加入而掉落的砖块数量。
  • 具体步骤
    • 初始处理
      • hitBricks方法中,首先保存原始网格ggrid,获取网格的行数n和列数m,创建结果数组ans来存储每次打击操作掉落的砖块数量。
      • 如果网格只有一行(n == 1),直接返回空结果数组,因为在这种情况下没有砖块会掉落。
      • 然后遍历打击位置数组h,对于每个打击位置hit,将对应网格位置的砖块值减1(模拟移除砖块)。
    • 标记稳定砖块
      • 接着,通过一个for循环对网格的第一行(i = 0)的每个列j调用dfs方法。这个dfs方法从给定的位置(i, j)开始,如果当前位置在网格范围内且是砖块(grid[i][j] == 1),就将这个砖块标记为稳定(标记为2),并递归地对上下左右四个相邻位置进行深度优先搜索(dfs(i + 1, j)dfs(i, j + 1)dfs(i - 1, j)dfs(i, j - 1)),同时返回感染(标记为2)的砖块数量。这样就标记出了初始状态下所有稳定的砖块。
    • 反向处理打击操作并计算掉落砖块数量
      • 然后从后向前遍历打击位置数组hfor (int i = h.length - 1; i >= 0; i--))。对于每个打击位置h[i],先将对应的网格位置砖块值加1(恢复被移除的砖块)。
      • 调用worth方法判断这个恢复的砖块是否值得掉落。如果值得掉落(worth方法返回true),就调用dfs方法从这个恢复的砖块位置开始,计算因为这个砖块加入而新感染(标记为2)的砖块数量,然后将结果减1(因为要计算掉落的砖块数量,不包括自身),并将这个值赋给ans[i]
    • worth方法原理
      • worth方法中,首先判断当前位置(i, j)是否是砖块(grid[i][j] == 1),并且这个砖块是否与稳定砖块相连。如果砖块在第一行(i == 0),它是稳定的;或者它的上下左右相邻位置有稳定砖块(grid[i - 1][j] == 2grid[i + 1][j] == 2grid[i][j - 1] == 2或者grid[i][j + 1] == 2),那么这个砖块就是值得掉落的,方法返回true,否则返回false

代码实现

// 打砖块
// 有一个 m * n 的二元网格 grid ,其中 1 表示砖块,0 表示空白
// 砖块 稳定(不会掉落)的前提是:
// 一块砖直接连接到网格的顶部,或者
// 至少有一块相邻(4 个方向之一)砖块 稳定 不会掉落时
// 给你一个数组 hits ,这是需要依次消除砖块的位置
// 每当消除 hits[i] = (rowi, coli) 位置上的砖块时,对应位置的砖块(若存在)会消失
// 然后其他的砖块可能因为这一消除操作而 掉落
// 一旦砖块掉落,它会 立即 从网格 grid 中消失(即,它不会落在其他稳定的砖块上)
// 返回一个数组 result ,其中 result[i] 表示第 i 次消除操作对应掉落的砖块数目。
// 注意,消除可能指向是没有砖块的空白位置,如果发生这种情况,则没有砖块掉落。
// 测试链接 : https://leetcode.cn/problems/bricks-falling-when-hit/
public class Code04_BricksFallingWhenHit {

    public static int n, m;

    public static int[][] grid;

    public static int[] hitBricks(int[][] g, int[][] h) {
        grid = g;
        n = g.length;
        m = g[0].length;
        int[] ans = new int[h.length];
        if (n == 1) {
            return ans;
        }
        for (int[] hit : h) {
            grid[hit[0]][hit[1]]--;
        }
        for (int i = 0; i < m; i++) {
            dfs(0, i);
        }
        for (int i = h.length - 1, row, col; i >= 0; i--) {
            row = h[i][0];
            col = h[i][1];
            grid[row][col]++;
            if (worth(row, col)) {
                ans[i] = dfs(row, col) - 1;
            }
        }
        return ans;
    }

    // 从(i,j)格子出发,遇到1就感染成2
    // 统计新增了几个2!
    public static int dfs(int i, int j) {
        if (i < 0 || i == n || j < 0 || j == m || grid[i][j] != 1) {
            return 0;
        }
        grid[i][j] = 2;
        return 1 + dfs(i + 1, j) + dfs(i, j + 1) + dfs(i - 1, j) + dfs(i, j - 1);
    }

    public static boolean worth(int i, int j) {
        return grid[i][j] == 1
                &&
                (i == 0
                        || (i > 0 && grid[i - 1][j] == 2)
                        || (i < n - 1 && grid[i + 1][j] == 2)
                        || (j > 0 && grid[i][j - 1] == 2)
                        || (j < m - 1 && grid[i][j + 1] == 2));
    }

}

五.总结

洪水填充是一种很简单的技巧,设置路径信息进行剪枝和统计,类似感染的过程。路径信息不撤销,来保证每一片的感染过程可以得到区分。看似是暴力递归过程,其实时间复杂度非常好,遍历次数和样本数量的规模一致!

Em.CV 是一个基于 OpenCV 的 C# 图像处理库,它提供了许多图像处理和计算机视觉的功能。其中,泛洪水填充(Flood Fill)是一种图像处理算法,用于填充一个封闭区域的像素。 在 Emgu.CV 中,你可以使用 `CvInvoke.FloodFill` 方法来进行泛洪水填充操作。该方法可以接受一个源图像、填充起始点、填充颜色、填充范围等参数。 下面是一个示例代码,演示如何使用 Emgu.CV 进行泛洪水填充: ```csharp using Emgu.CV; using Emgu.CV.Structure; // 加载图像 Image<Bgr, byte> image = new Image<Bgr, byte>("input.jpg"); // 定义填充起始点 int startX = 100; int startY = 100; // 定义填充颜色 MCvScalar fillColor = new MCvScalar(0, 0, 255); // 红色 // 定义填充范围 MCvConnectedComp connectedComponent = new MCvConnectedComp(); MCvScalar lowerDiff = new MCvScalar(20, 20, 20); // 填充颜色的下限差异 MCvScalar upperDiff = new MCvScalar(20, 20, 20); // 填充颜色的上限差异 // 进行泛洪水填充 CvInvoke.FloodFill(image, null, new System.Drawing.Point(startX, startY), fillColor, out connectedComponent, lowerDiff, upperDiff); // 显示结果图像 CvInvoke.Imshow("Flood Fill Result", image); CvInvoke.WaitKey(0); ``` 在这个示例中,我们首先加载了一个图像,然后定义了填充起始点、填充颜色以及填充范围。最后,调用 `CvInvoke.FloodFill` 方法进行填充操作,并显示结果图像。 请注意,这只是一个简单的示例,你可以根据自己的需求进行调整和扩展。另外,记得在使用 Emgu.CV 之前,你需要先安装 Emgu.CV 库并添加到你的项目引用中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值