本文的网课内容学习自B站左程云老师的算法详解课程,旨在对其中的知识进行整理和分享~
一.岛屿数量
题目:岛屿数量
算法原理
-
算法原理概述
- 这个算法主要是基于深度优先搜索(DFS)来计算岛屿的数量。
- 思路是遍历整个二维网格,如果遇到一个陆地('1'),就将岛屿数量加1,然后对这个陆地进行深度优先搜索,把与它相连的所有陆地都标记为已访问(在这个算法中通过将'1'变为'0'来标记),这样就可以把一个岛屿的所有陆地都标记完。
-
具体步骤
- 遍历网格
- 在
numIslands
方法中,首先获取网格的行数n
和列数m
。 - 然后使用两层嵌套的
for
循环遍历整个二维网格。
- 在
- 发现岛屿
- 当遇到
board[i][j]=='1'
时,说明发现了一个新的岛屿,此时将岛屿数量islands
加1。 - 接着调用
dfs
方法对这个岛屿进行深度优先搜索。
- 当遇到
- 深度优先搜索(
dfs
方法)- 在
dfs
方法中,首先进行边界条件判断。如果当前坐标(i, j)
超出了网格范围(i < 0
或者i == n
或者j < 0
或者j == m
)或者当前位置不是陆地(board[i][j]!= '1'
),就直接返回。 - 然后将当前位置的陆地标记为已访问(
board[i][j]=0
)。 - 接着递归地对上下左右四个相邻位置进行深度优先搜索,即调用
dfs(board, n, m, i - 1, j)
(上)、dfs(board, n, m, i+1, j)
(下)、dfs(board, n, m, i, j - 1)
(左)和dfs(board, n, m, i, j+1)
(右)。这样就可以把与当前陆地相连的所有陆地都标记为已访问,从而确定了一个完整的岛屿。
- 在
- 遍历网格
代码实现
// 岛屿数量
// 给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量
// 岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成
// 此外,你可以假设该网格的四条边均被水包围
// 测试链接 : https://leetcode.cn/problems/number-of-islands/
public class Code01_NumberOfIslands {
// 洪水填充的做法
// board : n * m
// O(n*m)最优解!
public static int numIslands(char[][] board) {
int n = board.length;
int m = board[0].length;
int islands = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (board[i][j] == '1') {
islands++;
dfs(board, n, m, i, j);
}
}
}
return islands;
}
public static void dfs(char[][] board, int n, int m, int i, int j) {
if (i < 0 || i == n || j < 0 || j == m || board[i][j] != '1') {
return;
}
// board[i][j] = '1'
board[i][j] = 0;
dfs(board, n, m, i - 1, j);
dfs(board, n, m, i + 1, j);
dfs(board, n, m, i, j - 1);
dfs(board, n, m, i, j + 1);
}
}
二.被围绕的区域
题目:被围绕的区域
算法原理
-
算法原理概述
- 此算法的核心思想是先标记那些不被围绕的'O'区域,然后将剩余的'O'区域转换为'X'。通过深度优先搜索(DFS)来实现对区域的标记。
-
具体步骤
- 边界'O'的处理
- 在
solve
方法中,首先获取矩阵的行数n
和列数m
。 - 然后分别对矩阵的上下边界和左右边界进行处理。对于上边界(
i = 0
)和下边界(i=n - 1
),遍历每一列j
,如果遇到'O',就调用dfs
方法进行深度优先搜索。同样,对于左边界(j = 0
,除了上下角的情况)和右边界(j = m - 1
,除了上下角的情况),遍历每一行i
,如果遇到'O',也调用dfs
方法。
- 在
- 深度优先搜索(
dfs
方法)- 在
dfs
方法中,首先进行边界条件判断。如果当前坐标(i, j)
超出了矩阵范围(i < 0
或者i == n
或者j < 0
或者j == m
)或者当前位置不是'O'(board[i][j]!= 'O'
),就直接返回。 - 然后将当前位置标记为'F'(这里'F'是一个临时标记,表示这个'O'是不被围绕的)。
- 接着递归地对上下左右四个相邻位置进行深度优先搜索,即调用
dfs(board, n, m, i + 1, j)
(下)、dfs(board, n, m, i - 1, j)
(上)、dfs(board, n, m, i, j + 1)
(右)和dfs(board, n, m, i, j - 1)
(左)。
- 在
- 最终处理
- 在
solve
方法的最后部分,再次遍历整个矩阵。对于每个位置(i, j)
,如果是'O',就将其转换为'X',因为这些'O'是被围绕的;如果是'F',就将其转换回'O',因为这些'O'是不被围绕的。
- 在
- 边界'O'的处理
代码实现
// 被围绕的区域
// 给你一个 m x n 的矩阵 board ,由若干字符 'X' 和 'O' ,找到所有被 'X' 围绕的区域
// 并将这些区域里所有的 'O' 用 'X' 填充。
// 测试链接 : https://leetcode.cn/problems/surrounded-regions/
public class Code02_SurroundedRegions {
public static void solve(char[][] board) {
int n = board.length;
int m = board[0].length;
for (int j = 0; j < m; j++) {
if (board[0][j] == 'O') {
dfs(board, n, m, 0, j);
}
if (board[n - 1][j] == 'O') {
dfs(board, n, m, n - 1, j);
}
}
for (int i = 1; i < n - 1; i++) {
if (board[i][0] == 'O') {
dfs(board, n, m, i, 0);
}
if (board[i][m - 1] == 'O') {
dfs(board, n, m, i, m - 1);
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (board[i][j] == 'O') {
board[i][j] = 'X';
}
if (board[i][j] == 'F') {
board[i][j] = 'O';
}
}
}
}
public static void dfs(char[][] board, int n, int m, int i, int j) {
if (i < 0 || i == n || j < 0 || j == m || board[i][j] != 'O') {
return;
}
board[i][j] = 'F';
dfs(board, n, m, i + 1, j);
dfs(board, n, m, i - 1, j);
dfs(board, n, m, i, j + 1);
dfs(board, n, m, i, j - 1);
}
}
三.最大人工岛
题目:最大人工岛
算法原理
-
算法原理概述
- 这个算法主要分为两个部分。第一部分是通过深度优先搜索(DFS)标记不同的岛屿并计算它们的面积;第二部分是遍历所有的0单元格,考虑将每个0变成1后对岛屿面积的影响,从而找到最大的岛屿面积。
-
具体步骤
- 标记岛屿并计算面积(第一部分)
- 在
largestIsland
方法中,首先获取矩阵的大小n
(这里n=m
,因为是n * n
的矩阵)。 - 然后使用双层
for
循环遍历矩阵。当遇到grid[i][j] == 1
时,使用dfs
方法对这个岛屿进行深度优先搜索,并为这个岛屿分配一个唯一的id
(从2开始,1可能用于表示原始的1单元格)。 - 在
dfs
方法中,首先进行边界条件判断。如果当前坐标(i, j)
超出了矩阵范围(i < 0
或者i == n
或者j < 0
或者j == m
)或者当前位置不是1(grid[i][j]!= 1
),就直接返回。否则,将当前单元格标记为id
,然后递归地对上下左右四个相邻位置进行深度优先搜索,即调用dfs(grid, n, m, i - 1, j, id)
(上)、dfs(grid, n, m, i+1, j, id)
(下)、dfs(grid, n, m, i, j - 1, id)
(左)和dfs(grid, n, m, i, j+1, id)
(右)。 - 回到
largestIsland
方法,创建一个大小为id
的数组sizes
来存储每个岛屿的面积。再次遍历矩阵,当遇到grid[i][j]>1
时(表示属于某个已标记的岛屿),将对应岛屿的面积sizes[grid[i][j]]
加1,并更新最大岛屿面积ans
。
- 在
- 考虑将0变成1后的面积变化(第二部分)
- 创建一个布尔数组
visited
来标记某个岛屿是否已经被合并计算过。 - 再次使用双层
for
循环遍历矩阵,当遇到grid[i][j] == 0
时,考虑将这个0变成1后的情况。分别获取这个0单元格上下左右相邻单元格的岛屿id
(如果存在的话),对于上相邻单元格up = i > 0?grid[i - 1][j]:0
,下相邻单元格down = i + 1 < n?grid[i + 1][j]:0
,左相邻单元格left = j > 0?grid[i][j - 1]:0
,右相邻单元格right = j + 1 < m?grid[i][j + 1]:0
。 - 首先将
up
对应的岛屿标记为已访问(visited[up]=true
),计算合并后的面积merge = 1 + sizes[up]
(这里的1是因为将当前的0变成了1)。然后如果down
对应的岛屿还没有被访问过(!visited[down]
),则将其面积加入merge
并标记为已访问。同样的操作对left
和right
进行。最后更新最大岛屿面积ans = Math.max(ans, merge)
,并将所有的visited
标记恢复为false
,以便处理下一个0单元格。
- 创建一个布尔数组
- 标记岛屿并计算面积(第一部分)
代码实现
// 最大人工岛
// 给你一个大小为 n * n 二进制矩阵 grid 。最多 只能将一格 0 变成 1 。
// 返回执行此操作后,grid 中最大的岛屿面积是多少?
// 岛屿 由一组上、下、左、右四个方向相连的 1 形成
// 测试链接 : https://leetcode.cn/problems/making-a-large-island/
public class Code03_MakingLargeIsland {
public static int largestIsland(int[][] grid) {
int n = grid.length;
int m = grid[0].length;
int id = 2;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 1) {
dfs(grid, n, m, i, j, id++);
}
}
}
int[] sizes = new int[id];
int ans = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] > 1) {
ans = Math.max(ans, ++sizes[grid[i][j]]);
}
}
}
// 讨论所有的0,变成1,能带来的最大岛的大小
boolean[] visited = new boolean[id];
int up, down, left, right, merge;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 0) {
up = i > 0 ? grid[i - 1][j] : 0;
down = i + 1 < n ? grid[i + 1][j] : 0;
left = j > 0 ? grid[i][j - 1] : 0;
right = j + 1 < m ? grid[i][j + 1] : 0;
visited[up] = true;
merge = 1 + sizes[up];
if (!visited[down]) {
merge += sizes[down];
visited[down] = true;
}
if (!visited[left]) {
merge += sizes[left];
visited[left] = true;
}
if (!visited[right]) {
merge += sizes[right];
visited[right] = true;
}
ans = Math.max(ans, merge);
visited[up] = false;
visited[down] = false;
visited[left] = false;
visited[right] = false;
}
}
}
return ans;
}
public static void dfs(int[][] grid, int n, int m, int i, int j, int id) {
if (i < 0 || i == n || j < 0 || j == m || grid[i][j] != 1) {
return;
}
// grid[i][j] == 1
grid[i][j] = id;
dfs(grid, n, m, i - 1, j, id);
dfs(grid, n, m, i + 1, j, id);
dfs(grid, n, m, i, j - 1, id);
dfs(grid, n, m, i, j + 1, id);
}
}
四.打砖块
题目:打砖块
算法原理
-
算法原理概述
- 这个算法的核心思路是先处理所有要打击的砖块位置,将对应砖块移除(通过减1操作),然后从顶部开始进行深度优先搜索(DFS)标记稳定的砖块。之后再反向处理打击操作,将移除的砖块加回来,对于每个加回的砖块,如果它是值得掉落(即与稳定砖块相连)的,就通过DFS计算因为这个砖块加入而掉落的砖块数量。
-
具体步骤
- 初始处理
- 在
hitBricks
方法中,首先保存原始网格g
到grid
,获取网格的行数n
和列数m
,创建结果数组ans
来存储每次打击操作掉落的砖块数量。 - 如果网格只有一行(
n == 1
),直接返回空结果数组,因为在这种情况下没有砖块会掉落。 - 然后遍历打击位置数组
h
,对于每个打击位置hit
,将对应网格位置的砖块值减1(模拟移除砖块)。
- 在
- 标记稳定砖块
- 接着,通过一个
for
循环对网格的第一行(i = 0
)的每个列j
调用dfs
方法。这个dfs
方法从给定的位置(i, j)
开始,如果当前位置在网格范围内且是砖块(grid[i][j] == 1
),就将这个砖块标记为稳定(标记为2
),并递归地对上下左右四个相邻位置进行深度优先搜索(dfs(i + 1, j)
、dfs(i, j + 1)
、dfs(i - 1, j)
和dfs(i, j - 1)
),同时返回感染(标记为2
)的砖块数量。这样就标记出了初始状态下所有稳定的砖块。
- 接着,通过一个
- 反向处理打击操作并计算掉落砖块数量
- 然后从后向前遍历打击位置数组
h
(for (int i = h.length - 1; i >= 0; i--)
)。对于每个打击位置h[i]
,先将对应的网格位置砖块值加1(恢复被移除的砖块)。 - 调用
worth
方法判断这个恢复的砖块是否值得掉落。如果值得掉落(worth
方法返回true
),就调用dfs
方法从这个恢复的砖块位置开始,计算因为这个砖块加入而新感染(标记为2
)的砖块数量,然后将结果减1(因为要计算掉落的砖块数量,不包括自身),并将这个值赋给ans[i]
。
- 然后从后向前遍历打击位置数组
worth
方法原理- 在
worth
方法中,首先判断当前位置(i, j)
是否是砖块(grid[i][j] == 1
),并且这个砖块是否与稳定砖块相连。如果砖块在第一行(i == 0
),它是稳定的;或者它的上下左右相邻位置有稳定砖块(grid[i - 1][j] == 2
、grid[i + 1][j] == 2
、grid[i][j - 1] == 2
或者grid[i][j + 1] == 2
),那么这个砖块就是值得掉落的,方法返回true
,否则返回false
。
- 在
- 初始处理
代码实现
// 打砖块
// 有一个 m * n 的二元网格 grid ,其中 1 表示砖块,0 表示空白
// 砖块 稳定(不会掉落)的前提是:
// 一块砖直接连接到网格的顶部,或者
// 至少有一块相邻(4 个方向之一)砖块 稳定 不会掉落时
// 给你一个数组 hits ,这是需要依次消除砖块的位置
// 每当消除 hits[i] = (rowi, coli) 位置上的砖块时,对应位置的砖块(若存在)会消失
// 然后其他的砖块可能因为这一消除操作而 掉落
// 一旦砖块掉落,它会 立即 从网格 grid 中消失(即,它不会落在其他稳定的砖块上)
// 返回一个数组 result ,其中 result[i] 表示第 i 次消除操作对应掉落的砖块数目。
// 注意,消除可能指向是没有砖块的空白位置,如果发生这种情况,则没有砖块掉落。
// 测试链接 : https://leetcode.cn/problems/bricks-falling-when-hit/
public class Code04_BricksFallingWhenHit {
public static int n, m;
public static int[][] grid;
public static int[] hitBricks(int[][] g, int[][] h) {
grid = g;
n = g.length;
m = g[0].length;
int[] ans = new int[h.length];
if (n == 1) {
return ans;
}
for (int[] hit : h) {
grid[hit[0]][hit[1]]--;
}
for (int i = 0; i < m; i++) {
dfs(0, i);
}
for (int i = h.length - 1, row, col; i >= 0; i--) {
row = h[i][0];
col = h[i][1];
grid[row][col]++;
if (worth(row, col)) {
ans[i] = dfs(row, col) - 1;
}
}
return ans;
}
// 从(i,j)格子出发,遇到1就感染成2
// 统计新增了几个2!
public static int dfs(int i, int j) {
if (i < 0 || i == n || j < 0 || j == m || grid[i][j] != 1) {
return 0;
}
grid[i][j] = 2;
return 1 + dfs(i + 1, j) + dfs(i, j + 1) + dfs(i - 1, j) + dfs(i, j - 1);
}
public static boolean worth(int i, int j) {
return grid[i][j] == 1
&&
(i == 0
|| (i > 0 && grid[i - 1][j] == 2)
|| (i < n - 1 && grid[i + 1][j] == 2)
|| (j > 0 && grid[i][j - 1] == 2)
|| (j < m - 1 && grid[i][j + 1] == 2));
}
}
五.总结
洪水填充是一种很简单的技巧,设置路径信息进行剪枝和统计,类似感染的过程。路径信息不撤销,来保证每一片的感染过程可以得到区分。看似是暴力递归过程,其实时间复杂度非常好,遍历次数和样本数量的规模一致!