keras 实现包括batch size所在维度的reshape,使用backend新建一层 针对多输入使用不同batch size折衷解决办法

新建层,可以在此层内使用backend完成想要的功能,如包含batch size维度在内的reshpe:

def backend_reshape(x):
    return backend.reshape(x, (-1, 5, 256))

使用lambda方法调用层:

vision_model.add(Lambda(backend_reshape, output_shape=(5, 256)))

注意指定输出维度

 

在多输入问题中,有时两个输入具有不同的batch size,但在keras无法直接实现。我所遇到的问题是,我有两个输入分别是图像输入和问题输入,对于图像输入每个样本是一个图像序列。这就要求我们在把图像序列输入到CNN中时是一张一张图像。

我的解决办法是在输入是把图像序列作为一个样本,等输入进去后,通过上述的reshape方法将图像序列重新拆分成一张张图像输入到CNN,然后在后期处理时重新reshape成一个序列样本。代码:

image_seq = 4
def preprocess_reshape(x):
    return K.reshape(x, (-1, 224, 224,3))

def backend_reshape(x):
    return K.reshape(x, (-1, image_seq, 256))
image_input = Input(shape=(image_seq, 224, 224, 3) , name='input_img')
image_re = Lambda(preprocess_reshape, output_shape=(224,224,3))(image_input)
im_pre = Lambda(preprocess_input, name='preprocessing')(image_re)
vision_model.add(Lambda(backend_reshape, output_shape=(image_seq, 256)))
vision_model.add(LSTM(256, kernel_regularizer=l2, recurrent_regularizer=l2))

 

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
使用CNN+BiLSTM+Attention进行多维时间序列预测可以提高预测的准确性。这种模型结构可以捕捉到时间序列的长期依赖关系和局部相关性,同时对不同维度的特征进行建模。下面是使用Keras实现CNN+BiLSTM+Attention的多维时间序列预测的示例代码。 ```python from keras.models import Model from keras.layers import Input, Conv1D, MaxPooling1D, Flatten, Dense, LSTM, Bidirectional, Dropout, concatenate, Permute, Reshape, Multiply from keras.optimizers import Adam from keras.callbacks import EarlyStopping, ReduceLROnPlateau from keras import backend as K def attention_3d_block(inputs): a = Permute((2, 1))(inputs) a = Dense(TIME_STEPS, activation='softmax')(a) a_probs = Permute((2, 1))(a) output_attention_mul = Multiply()([inputs, a_probs]) return output_attention_mul def build_model(): main_inputs = Input(shape=(TIME_STEPS, INPUT_DIM, )) cnn1 = Conv1D(filters=64, kernel_size=3, activation='relu', padding='same')(main_inputs) cnn1 = MaxPooling1D(pool_size=2)(cnn1) cnn1 = Dropout(0.2)(cnn1) cnn2 = Conv1D(filters=128, kernel_size=3, activation='relu', padding='same')(cnn1) cnn2 = MaxPooling1D(pool_size=2)(cnn2) cnn2 = Dropout(0.2)(cnn2) cnn3 = Conv1D(filters=256, kernel_size=3, activation='relu', padding='same')(cnn2) cnn3 = MaxPooling1D(pool_size=2)(cnn3) cnn3 = Dropout(0.2)(cnn3) lstm = Bidirectional(LSTM(units=128, return_sequences=True, dropout=0.5))(cnn3) attention_mul = attention_3d_block(lstm) attention_mul = Flatten()(attention_mul) dense1 = Dense(units=64, activation='relu')(attention_mul) dense1 = Dropout(0.5)(dense1) dense2 = Dense(units=1, activation='linear')(dense1) model = Model(inputs=main_inputs, outputs=dense2) model.compile(optimizer=Adam(lr=0.001), loss='mse') return model ``` 在这个模型,我们使用了三个卷积层、一个双向LSTM层和一个Attention层。卷积层用于提取时间序列的局部特征,LSTM层用于捕捉时间序列的长期依赖关系,Attention层用于加强对LSTM的关注。 我们使用了EarlyStopping和ReduceLROnPlateau两个回调函数来帮助我们控制模型的训练过程。其EarlyStopping用于防止过拟合,ReduceLROnPlateau用于调整学习率。 ```python # 训练模型 model = build_model() early_stopping = EarlyStopping(monitor='val_loss', patience=10) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5) history = model.fit(X_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS, validation_data=(X_val, y_val), callbacks=[early_stopping, reduce_lr]) # 预测结果 y_pred = model.predict(X_test) # 评估模型 score = model.evaluate(X_test, y_test, batch_size=BATCH_SIZE) print('Test loss:', score) ``` 在训练过程,我们可以通过调用fit函数来训练模型。在预测时,我们可以使用predict函数来进行预测。在评估模型时,我们可以使用evaluate函数来计算模型的损失。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值