神经网络
语音识别菜鸟
这个作者很懒,什么都没留下…
展开
-
Tensorflow无法调用GPU,报错Could not load dynamic library ‘cudart64_100.dll‘‘cublas64_100.dll‘...
首先 import tensorflow是没有报错的执行如下代码查看可调用的设备列表是否包含gpu:from tensorflow.python.client import device_libprint(device_lib.list_local_devices())报错一大堆:2020-09-08 18:48:21.805969: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Could not load原创 2020-09-08 19:13:08 · 6593 阅读 · 3 评论 -
简单二分类神经网络的分类结果分析(结合逻辑回归)
1.当隐层神经元数目为1时,其功能与逻辑回归一致,生成的分界线(等高线)是线性的,等高线为0.5:2.增加隐层神经元数量,当为3时,分类效果就好多了,涂色部分对应的二维特征(x1,x2)经过NN系统后将被归为一类:3.试试更复杂的数据集,分类结果不错:4.为了探讨NN与逻辑回归的联系,我将隐层三个神经元的分类结果单独输出:将它们叠加后发现,最终结果的分界线其实是隐层分界线的叠加,换句话讲,NN隐层执行的是多次二分类,一个神经元对应一条分界线,输出层会考虑所有分界线,原创 2020-09-08 12:06:12 · 1637 阅读 · 0 评论 -
神经网络基础:从二分类初步认识NN(结合逻辑回归)、神经网络介绍及其前向传播(Forward Propagation)
概念及前向传播(Forward Propagation)个人觉得将神经网络和逻辑回归联系起来会更好理解逻辑回归其实就是感知机,结构图如下(以二维为例,方便可视化):其中:用矩阵表达为:其中W维度(1,2), X维度(2,1)利用逻辑回归可以处理二分类问题,分界线是线性的倘若数据并不是线性可分的,如下:那么使用逻辑回归的分类结果就不尽如人意了:这时我们试试多使用几个感知机,组成如下神经网络(输入层编为第0层):(其中单元“1”并不是神经元,原创 2020-09-04 21:42:59 · 744 阅读 · 0 评论