统计学总结之Bias(偏差),Error(误差),和Variance(方差)的区别

Bias(偏差),Error(误差),和Variance(方差)的区别

1)、概念:

bias :度量了某种学习算法的平均估计结果所能逼近学习目标的程度;(一个高的偏差意味着一个坏的匹配)
variance :则度量了在面对同样规模的不同训练集时分散程度。(一个高的方差意味着一个弱的匹配,数据比较分散)
这里写图片描述
靶心为某个能完美预测的模型,离靶心越远,则准确率随之降低。靶上的点代表某次对某个数据集上学习某个模型。纵向上,高低的bias:高的Bias表示离目标较远,低bias表示离靶心越近;横向上,高低的variance,高的variance表示多次的“学习过程”越分散,反之越集中。
所以bias表示预测值的均值与实际值的差值;而variance表示预测结果作为一个随机变量时的方差。

2)、bias与Variance的区别:

首先 Error = Bias + Variance
Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输出结果与模型输出期望(平均值)之间的误差,即模型的稳定性,数据是否集中。
方差是多个模型间的比较,而非对一个模型而言的;偏差可以是单个数据集中的,也可以是多个数据集中的。

3)、解决bias和Variance问题的方法:

①在训练数据上面,我们可以进行交叉验证(Cross-Validation)。
一种方法叫做K-fold Cross Validation (K折交叉验证), K折交叉验证,初始采样分割成K个子样本,一个单独的子样本被保留作为验证模型的数据,其他K-1个样本用来训练。交叉验证重复K次,每个子样本验证一次,平均K次的结果或者使用其它结合方式,最终得到一个单一估测。
当K值大的时候,我们会有更少的Bias(偏差), 更多的Variance。
当K值小的时候,我们会有更多的Bias(偏差), 更少的Variance。
cross-validation很大一个好处是避免对test dataset的二次overfitting。k-fold一般取k=5/10比较常见,当然也可以根据你的需要(看样本量怎么可以整除啦之类的),也要看电脑和软件的运算能力。
②Boosting通过样本变权全部参与,故Boosting 主要是降低 bias(同时也有降低 variance 的作用,但以降低 bias为主);而 Bagging 通过样本随机抽样部分参与(单个学习器训练),故bagging主要是降低 variance。
③High bias解决方案:
1)与领域专家交流来获取更多信息,据此增加更多熟人特征
2)以非线性方式对现有特征进行组合
3)使用更复杂模型,比如神经网络中的层等
High Variance:
如果问题是由于我们过度高估模型复杂度而导致的high Variance,那么可以把一些影响小的特征去掉来降低模型复杂度。此时也无需收集更多数据。

  • 18
    点赞
  • 75
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Bias Variance Dilemma,即偏差方差困境,是机器学习中的一个重要概念。在训练模型时,我们希望模型能够很好地拟合训练数据,同时也要具有很好的泛化能力,即能够对未见过的数据进行准确的预测。但是,在实际应用中,模型可能会出现两种问题,即偏差方差偏差指的是模型对训练数据的拟合程度不够好,无法很好地捕捉数据中的关系。而方差则指的是模型过度拟合了训练数据,导致对未见过的数据的预测准确度下降。 为了更好地理解偏差方差,我们可以将测试误差分解为偏差方差之和的形式: $Error(x) = Bias^2(x) + Variance(x) + \epsilon$ 其中,$Error(x)$ 表示在输入为 $x$ 时的测试误差,$Bias(x)$ 表示模型预测结果与真实结果之间的偏差,$Variance(x)$ 表示模型预测结果的方差,$\epsilon$ 表示噪声的影响。 推导过程如下: 首先,我们有一个真实的数据分布 $y=f(x)+\epsilon$,其中 $f(x)$ 表示真实的关系,$\epsilon$ 表示噪声。 假设我们使用一个模型 $h(x)$ 来拟合真实的数据分布,那么预测结果为 $\hat{y}=h(x)$。 预测结果与真实结果之间的误差为: $Err(x) = \hat{y} - y = h(x) - f(x) - \epsilon$ 对上式进行求平方,并对误差取期望,得到: $E[(Err(x))^2] = E[(h(x)-f(x)-\epsilon)^2]$ 将上式展开,得到: $E[(Err(x))^2] = E[h(x)^2] + E[f(x)^2] + E[\epsilon^2] - 2E[h(x)f(x)] - 2E[h(x)\epsilon] + 2E[f(x)\epsilon]$ 根据方差和协方差的定义,可以将上式进一步拆分为: $E[(Err(x))^2] = [E[h(x)] - f(x)]^2 + E[h(x)^2] - [E[h(x)] - f(x)]^2 + E[\epsilon^2]$ $+ 2[E[h(x)f(x)] - E[h(x)]f(x)] - 2[E[h(x)\epsilon] - E[h(x)]E[\epsilon]] + 2[E[f(x)\epsilon] - f(x)E[\epsilon]]$ 整理后,得到: $E[(Err(x))^2] = Bias^2[x] + Variance[x] + \epsilon$ 其中,$Bias[x] = E[h(x)] - f(x)$ 表示偏差,$Variance[x] = E[h(x)^2] - E[h(x)]^2$ 表示方差,$\epsilon$ 表示噪声。 从上式可以看出,测试误差可以分解为偏差方差和噪声三部分。偏差方差之间存在一种权衡关系,即减小偏差会增加方差,减小方差会增加偏差。因此,我们需要在偏差方差之间寻求一个平衡,以获得更好的泛化能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值