import pandas as pd
path = '../../data/exercise_data/drinks.csv'
# 展示被省略的列
pd.set_option('display.max_columns', 10)
drinks = pd.read_csv(path)
# 哪个大陆(continent)平均消耗的啤酒(beer)更多
# drinks.groupby('continent').beer_servings.mean()
# 打印出每个大陆(continent)的红酒消耗(wine_servings)的描述性统计值
# print(drinks.groupby('continent').wine_servings.describe())
# 打印出每个大陆每种酒类别的消耗平均值
# print(drinks.groupby('continent').mean())
# 打印出每个大陆每种酒类别的消耗中位数
# print(drinks.groupby('continent').median())
# 打印出每个大陆对spirit饮品消耗的平均值,最大值和最小值
print(drinks.groupby('continent').spirit_servings.agg(['mean', 'max', 'min']))
数据分析Pandas练习题三:数据分组
最新推荐文章于 2024-04-15 18:11:12 发布
本文介绍了如何利用Python的Pandas库进行数据分组操作,是机器学习预处理的重要步骤。通过实例解析了如何对数据进行分组聚合,实现数据的深入分析。
摘要由CSDN通过智能技术生成