敏捷软件开发第二部分(LSP:Liskov替换原则)

不得不说,我已经卡在了这个原则两个周末了(因为只有周末有时间,平时加班回来基本洗澡完就睡死了,睡眠严重不足!)
看到刚刚才感觉能有点理解,这周末之前会把这篇日记补完,并附上代码。(嗯,已经立好flag了!)

啊哈哈哈,就知道flag这种鬼东西是真实有效了,我活活躺尸了两个月了。(每周只有半天一天的休息时间被基友什么鬼的占满了,加上几乎是一两周一次的通宵干活,搞的整个人都不成样了,精神状态好差,成天只想睡觉,日渐消瘦。)

Liskov替换原则:
子类型必须能够替换他们的基类型

举个栗子:
在数学上,正方形,长方形都是矩形,正方形是矩形中一个特殊的存在,长宽相等。那么我们将矩形定义为基类

//创建基类 矩形
class Rectangle
{
    private double width;
    private double height;

    public double Width
    {
        get{ return width;}
        set{ width = value;}
    }

    public double Height
    {
        get{ return height;}
        set{ height = value;}
    }
}

//1.当创建长方形时,继承基类,条件符合。(因为长方形的长跟宽与基类矩形一致,各自控制。)

//2.当创建正方形时,继承基类,条件不符合。(正方形的只有一条边,而矩形是控制两条边边,在特定情况下,使用基类调用的话,会出问题)

如:

class Rectangle
{
    ...

    public void Area()
    {
        Console.WriteLine("矩形的面积:"+(width * height));
    }
}

//长方形设置对应长宽,调用该方法时,得出的结果是所预期的。

//正方形设置边长(长或宽中的一个),调用该方法时,得出的结果并非预期中的值。因为矩形的算法是 长 * 宽 = 面积。而正方形只有一个边,这种情况下,我们可以通过以下方式解决(但治标不治本,依旧不是最佳的处理方式)
class Square : Rectangle
{
    //基类的该方法记得加上 virtual 
    public override double Width 
    {
        set
        {
            base.width = value;
            base.height = value;
        }
    }

    public override double Height 
    {
        set
        {
            base.width = value;
            base.height = value;
        }
    }
}

//为什么会治标不治本呢?看下面这个方法
void g (Rectangle r)
{
    r.Width = 5;
    r.Height = 4;
    if (r.Area() != 20) 
    {
        throw new Exception("该矩形有问题!");
    }
}

//这就是问题所在~

看完例子后,就可以得出以下的结论了。
这里的子类型(也就是基类型的派生类 ,这是个人理解,也不确定是否有误)必须遵循以下规则:
在重新声明派生类中的例程时只能使用相等或者更弱的牵制条件来替换原始的前置条件,只能使用相等或或者更强的后置条件来替换原始的后置条件。

按上面的例子而言,就是,正方形 setter的后置条件比基类的弱(也就是,子类没有遵从基类的的约束,这就称为弱。)

这里写图片描述
画个图 ,可以比较好理解一些。
前置条件:假设A是基类,B是各种各样的子类,A可以任意调用各种B来执行各种行为,也就是,B可以是A也可以是继承A的派生类。
后置条件:假设A是基类的约束条件,那么子类必须符合A或比A更小(强)的约束。(C比A的约束弱,所以C的违反了A定下的约束。)

大概这样子了。躺两个月了,还是要起来诈尸一下的。坐等悦天王检查作业,希望我的理解没错!

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
weixin102旅游社交微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值