两张ID卡,完美消除互相干扰合二为一,实现“一卡”正反两用。

背景:公司打卡一张卡、饭卡一张卡,都是mango卡类型。这个类型不重要,重要的是很厚很厚很不方便。


就这样,某宝截了两个图。




反正就是很厚了,但是看到公交卡IC卡里面有线圈


只要避开线圈就可以自行DIY,受到提示。接下来动手


叩开粘的胶水,就是这样了。





细节图




接下来就是把两个线圈放到一起,刷卡,果不其然门禁报警了,去查了查资料,大概是这样的:

大致搜索方向:FRID、碰撞、冲突         关键词果然顶事。

长篇大论我就不引用了,简单理解就是

门禁本来可以通过算法都读取到,但是为了安全起见,一般都简单粗暴。只要同时有两张卡刷门禁器就乱套了,干脆都“拒之门外”,以保障最安全之策。


总结一下就是怎么防止被同时“激活”,那就某宝找:防干扰——>防磁贴,最终选择一款:卡与卡互不干扰(就那个多啦A梦)




上下两张工牌胸卡的纸片,一个是饭卡、一个是门禁、中间是防磁贴。

去门禁测试一下,搞定。

这样使用的时候就分正反面。

实现一“卡”两用

以下是将您提供的两段代码合并并进行整合优化的示例代码: ```python import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error # 读取Excel文件,将数据存储为DataFrame格式 df = pd.read_excel('数据.xlsx') # 对DataFrame进行预处理 df = df.dropna() # 删除缺失值 df = df.drop(['公司性质_规模'], axis=1) # 删除无用列 # 对分类变量进行编码转换 le = LabelEncoder() df['经验要求'] = le.fit_transform(df['经验要求']) df['文凭要求'] = le.fit_transform(df['文凭要求']) # 将数据分为特征X和目标y X = df[['经验要求', '文凭要求']] y = df['薪资待遇_平均月薪'] # 将数据分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练线性回归模型 reg = LinearRegression().fit(X_train, y_train) # 使用模型进行预测 y_pred = reg.predict(X_test) # 计算均方误差 mse = mean_squared_error(y_test, y_pred) # 对整个数据集进行预测 df['预测薪资待遇_平均月薪'] = reg.predict(X) # 将预测结果保存到Excel文件中 df.to_excel('深圳2023年求职信息预测.xlsx', index=False) # 输出预测结果 print("预测结果:") print("===============================") print("姓名\t年龄\t分数\t学位") for i in range(len(df)): print("{name}\t{age}\t{score}\t{degree}".format( name=df.iloc[i]['姓名'], age=df.iloc[i]['年龄'], score=df.iloc[i]['薪资待遇_平均月薪'], degree=df.iloc[i]['文凭要求'] )) ``` 这段代码首先读取Excel文件,并进行了预处理,包括删除缺失值和无用列,以及对分类变量进行编码转换。然后将数据分为特征X和目标y,并将数据集划分为训练集和测试集。接着训练线性回归模型,并使用模型预测测试集和整个数据集的结果。最后,将预测结果保存到Excel文件中,并输出预测结果。 为了使输出结果对齐整齐,我们使用了制表符`\t`作为分隔符。同时,我们将"文凭要求"这一列的表头改为了中文字符"学位"。输出结果的格式类似于表格,可以更清晰地展示预测结果。 需要注意的是,如果您的Excel文件中存在多个工作表,可以使用`pd.read_excel`函数的`sheet_name`参数指定要读取的工作表。同时,在输出预测结果时,我们使用了DataFrame对象的`iloc`属性进行索引,这样可以更方便地获取每个数据的值。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值