- 重点:求导公式、一元二元函数极值、泰勒公式、方向导数与梯度、拉格朗日乘数法
一、函数
1、函数的基本知识
1、函数的概念:给定一个数集A,对A施加一个对应的法则/映射f,记做:f(A),那 么可以得到另外一个数集B,也就是可以认为B=f(A);那么这个关 系就叫做函数关系式,简称函数。
2、函数的三要素:定义域、值域、对应法则
3、对应关系:一一映射、多一映射、一多映射(隐函数)
2、基本函数
常数函数、一次函数、二次函数、幂函数、指数函数、对数函数、三角函数、反三角函数。
- (1)幂函数
特点:
函数图像都经过(1,1)点
- (2)指数函数
特点:
函数图像都经过(0,1)点
a > 1 递增,0 < a < 1 递减
- (3)对数函数
特点:
函数图像都经过(1,0)点
a > 1 递增,0 < a < 1 递减(反函数原函数单调性相同)
- (4)三角函数
1、正弦函数:对边比斜边
2、余弦函数:邻比斜
3、正切函数:对比邻 = sin x/cos x
4、余切函数:邻比对
5、正割函数、余割函数:余弦的倒数、正弦的倒数
- (5)反三角函数
本质:由 正余弦值 求 角度
图像:正余弦等函数图像装置(y=x轴翻转)
3、函数常见的特性
1、有界性
有界 |y| <= M
有上界
有下界
2、单调性
单调区间:通过函数求导计算
3、奇偶性
奇函数: 关于 0点 对称
偶函数: 关于 y轴 对称
4、周期性
最小正周期
4、反函数
1、函数拥有反函数的条件:函数必须一一映射
1、反函数的特点:① 图像关于y = x 轴对称,即相当于 xy轴 转置,反函数的值域是原函数的定义域 ③ 反函数与原函数单调性相同
5、复合函数
1、概念:基本初等函数的嵌套
2、要求:内部函数的值域区间被包含于外部函数的定义域区间
3、记做:如下图
二、极限
a点极限存在:a的左极限 = a的右极限时 = A ,a点极限值存在,且为A
1、极限的定义
(1)数列的极限
思想:求出 一个N值(通常会用到放大的思想)
(2)函数的极限
- 有限值 x0 时函数的极限
- 有限值 x0 时函数的左极限、右极限
- 趋于无穷大时函数的极限
- 趋于无穷大时函数的左极限、右极限
2、证明极限的两个法则
1、夹逼准则
2、单调有界必有极限
(1)夹逼准则
- 数列极限
- 函数极限
3、两个重要的极限:
4、无穷大与无穷小
- 特点:无穷小与无穷小是一个动态逼近的量
- 无穷小的阶数
三、导数
- 特点: ① 一元函数 存在(左右极限存在且相等),则函数可导、可微且为光滑的曲线。
- ② 多元函数:可偏导与连续之间没有联系,也就是说可偏导推不出连续,连续推不出可偏导。
- 多元函数中可微必可偏导,可微必连续,可偏导推不出可微,但若一阶偏导具有
- 连续性则可推出可微。
- ③ 二元里,可微级别高,可导+导连续→_→可微,可微→_→原连续,可微→_→该点可导,但是
- 可微 推不出来 导连续。并且二元里某点连续和某点可导 谁也推不出谁。
1、导数的定义
2、导数的求导公式与运算法则
- 反函数求导
- 复合函数求导
- 高阶导数
一阶导数之后的导数都称作高阶导数
3、导数的运用
(1)函数的单调性与凹凸性
1、函数的单调性:一阶导数来判断;一阶导数大于零 递增,一阶导数小于零 递减
2、函数的凹凸性:二阶导数来判断;二阶导数大于零 下凹,二阶导数小于零 上凸
3、驻点:一阶导数 = 0 的点,驻点并非都是极值点,必须前后单调性发生变化
4、拐点:函数凹凸性发生变化的点(二阶导数 = 0 且该点两边数值异号的点)
5、导数趋势图像:法则:奇穿偶不穿(按照当前量的自变量的次数判断奇偶,由左边导数值的正负决定从上或者下开始)
例:
(2)函数极值与最值
- 函数极值
方法一:一阶导数 = 0 所有的驻点,判断驻点左右的单调性
方法二:一阶导数 = 0 所有的驻点,代入二阶导数(其实是高阶偶次导数)中判断其正负性;正数则函数图像下凹,极小值,复数则函数图像上凸,极大值。
例:
- 函数最值
方法:求出所有极值嫌疑点和闭区间端点值,最大的即最大值。
例:
(3)泰勒公式
Taylor(泰勒)公式是用一个函数在某点的信息描述其附近取值的一元n次多项式,它是一个近似值,因此有误差为Rn(x)
- 泰勒公式的具体写法:
- 麦克劳林公式(特殊,x0=0)
麦克劳林是泰勒公式的特殊情况,是在 x0 = 0 处的泰勒展开式
- 余项
- 常见的 麦克劳林公式(对 x=0 进行展开) 展开式
四、多元函数
https://blog.csdn.net/qq_16555103/article/details/88251729 --------------- 多元函数
--------------------------------------------------------------------------------------------------------------
高等数学的常见公式定理:
https://blog.csdn.net/Xiaotongbiji/article/details/79483580 ----------------- 高等数学基本公式及个人总结篇
https://blog.csdn.net/ahaotata/article/details/83992656 ------------------ 高等数学积分公式大全
https://wenku.baidu.com/view/19a66aeef8c75fbfc77db2bf.html ------------------ 高等数学积分公式大全