本篇介绍float和double在某些计算中存在的缺陷以及BigDecimal的具体用法。
为什么不使用float和double
我们在做银行项目或者财务系统的时候会发现很多比如金额、价格这样的数据类型都是BigDecimal,并没有使用更常用的double或者float,其原因是double和float在做浮点运算时会存在精度缺失问题。例如下面的程序:
public class Main {
public static void main(String[] args) {
double d1 = 10.2;
double d2 = 1.19;
System.out.println("d1 * d2 = " + (d1 * d2));
System.out.println("d1 + d2 = " + (d1 + d2));
System.out.println("\n");
float f1 = 10.2F;
float f2 = 1.19F;
System.out.println("f1 * f2 = " + (f1 * f2));
System.out.println("f1 + f2 = " + (f1 + f2));
}
}
我们以为的结果是:
d1 * d2 = 12.138
d1 + d2 = 11.39
f1 * f2 = 12.138
f1 + f2 = 11.39
然而其最终结果是:
d1 * d2 = 12.137999999999998
d1 + d2 = 11.389999999999999
f1 * f2 = 12.1380005
f1 + f2 = 11.389999
为什么float和double的浮点运算会存在精度丢失
首先我们要了解十进制(带小数)怎么转换成二进制。十进制转换成二进制时,整数部分和小数部分分开计算。整数部分就是我们熟悉的除2取余法,小数部分的处理方式是乘以2得到整数部分(0或1),然后将得到的小数部分继续乘以2直到小数部分为0或达到相应的位数,与整数不同的是得到的0或1是正序排列的。例如上面提到的10.2的计算方法为:
整数部分:
10 / 2 = 5 余 0
5 / 2 = 2 余 1
2 / 2 = 1 余 0
1 / 2 = 0 余 1
因此10的二进制表示为1010。
小数部分:
0.2 * 2 = 0.4 取整 0
0.4 * 2 = 0.8 取整 0
0.8 * 2 = 1.6 取整 1
0.6 * 2 = 1.2 取整 1
0.2 * 2 = 0.4 取整 0
可以看到小数部分为0011的循环
也就是说小数部分是无法精切表示的,类似于十进制表示1/3也是没法精确表示的。
BigDecimal
BigDecimal是java.math包中的类,为不可变对象。使用十进制+小数点位数来表示小数,以此避免小数点的出现,也就防止了精度丢失。例如333.66表示为33366*0.1^2。
其主要构造函数如下:
//将double转换为BigDecimal
BigDecimal(double val);
//将int转换为BigDecimal
BigDecimal(int val);
//将String转换为BigDecimal
BigDecimal(String val);
但使用double作为构造函数的参数构造BigDecimal对象时,值也会存在不准确的情况。例如:
import java.math.BigDecimal;
public class Main {
public static void main(String[] args) {
BigDecimal bd = new BigDecimal(0.2);
System.out.println("double:" + bd);
}
}
得到的结果:double:0.200000000000000011102230246251565404236316680908203125。因此我们还是使用String参数的构造函数,使用时只需要Double.toString()转换一下即可。
BigDecimal主要方法
最常用的几个方法如下:
//加法
public BigDecimal add(BigDecimal value);
//减法
public BigDecimal subtract(BigDecimal value);
//乘法
public BigDecimal multiply(BigDecimal value);
//除法
public BigDecimal divide(BigDecimal value);
//返回此BigDecimal的绝对值
public BigDecimal abs();
//比较当前BigDecimal与给定的BigDecimal的值,大于则返回1,等于则返回0,小于则返回-1
public int compareTo(BigDecimal val);
//将当前BigDecimal的值转换为double
public double doubleValue();
//将当前BigDecimal转换为float
public float floatValue();
//返回当前BigDecimal与给定的BigDecimal中较大的值,如果相等,返回当前BigDecimal
public BigDecimal max(BigDecimal val);
//返回当前BigDecimal与给定的BigDecimal中较小的值,如果相等,返回当前BigDecimal
public BigDecimal min(BigDecimal val);
除法在不能整除时会报错,但devide()方法有多个重载方法,我们可以调用另一个代替的方法,方法参数如下:
//参数分别为:除数,小数点后保留位数,舍入模式
public BigDecimal divide(BigDecimal divisor, int scale, int roundingMode);
其中舍入模式有8种,分别为:
- ROUND_UP:向远离零的方向舍入。舍弃非零部分,并将非零舍弃部分相邻的一位数字加一。
- ROUND_DOWN:向接近零的方向舍入。舍弃非零部分,同时不会非零舍弃部分相邻的一位数字加一,采取截取行为。
- ROUND_CEILING:向正无穷的方向舍入。如果为正数,舍入结果同ROUND_UP一致;如果为负数,舍入结果同ROUND_DOWN一致。注意:此模式不会减少数值大小。
- ROUND_FLOOR:向负无穷的方向舍入。如果为正数,舍入结果同ROUND_DOWN一致;如果为负数,舍入结果同ROUND_UP一致。注意:此模式不会增加数值大小。
- ROUND_HALF_UP:向“最接近”的数字舍入,如果与两个相邻数字的距离相等,则为向上舍入的舍入模式。如果舍弃部分>= 0.5,则舍入行为与ROUND_UP相同;否则舍入行为与ROUND_DOWN相同。这种模式也就是我们常说的我们的“四舍五入”。
- ROUND_HALF_DOWN:向“最接近”的数字舍入,如果与两个相邻数字的距离相等,则为向下舍入的舍入模式。如果舍弃部分> 0.5,则舍入行为与ROUND_UP相同;否则舍入行为与ROUND_DOWN相同。这种模式也就是我们常说的我们的“五舍六入”。
- ROUND_HALF_EVEN:向“最接近”的数字舍入,如果与两个相邻数字的距离相等,则相邻的偶数舍入。如果舍弃部分左边的数字奇数,则舍入行为与 ROUND_HALF_UP 相同;如果为偶数,则舍入行为与 ROUND_HALF_DOWN 相同。注意:在重复进行一系列计算时,此舍入模式可以将累加错误减到最小。此舍入模式也称为“银行家舍入法”,主要在美国使用。四舍六入,五分两种情况,如果前一位为奇数,则入位,否则舍去。
- ROUND_UNNECESSARY:断言请求的操作具有精确的结果,因此不需要舍入。如果对获得精确结果的操作指定此舍入模式,则抛出ArithmeticException。
需要注意的是,在使用BigDecimal做类似叠加操作时要重新赋值,例如下面的程序叠加操作是无效的。
public class BaseTest {
public static void main(String[] args) {
BigDecimal b = new BigDecimal("10");
for (int i=0;i<10;i++){
//不正确写法
b.add(new BigDecimal("1"));
//正确写法
//b = b.add(new BigDecimal("1"));
}
System.out.println(b);
}
}
按照以上代码输出结果为10,重新赋值的输出结果为20。原因在于BigDecimal是不可变的,add()方法返回的是一个新的BigDecimal。