异常检测算法之HBOS
前言HBOS(Histogram-based Outlier Score)核心思想:将样本按照特征分成多个区间,样本数少的区间是异常值的概率大。原理该方法为每一个样本进行异常评分,评分越高越可能是异常点。评分模型为:假设样本p第 i 个特征的概率密度为Pi ,则p的概率密度可以计算为(多个特征的概率密度的乘积):两边取对数:概率密度越大,异常评分越小,则两边乘以“-1”:即:如何计算概率密度,特别是对于连续型数据?最简单的方法是对连续数据进行离散化。离散化的基本思想是设置“断点”,