普里姆(Prim)算法之加权连通图的最小生成树问题

1.图的几个概念

(1)连通图:在无向图中,若任意两个顶点vi与vj都有路径相通,则称该无向图为连通图
(2)强连通图:在有向图中,若任意两个顶点vi与vj都有路径相通,则称该有向图为强连通图
(3)连通网:在连通图中,若图的边具有一定的意义,每一条边都对应着一个数值,称为,权代表着连接两个顶点的代价,称这种连通图叫做连通网
(4)生成树:一个连通图的生成树是指一个连通子图,它含有图中全部 个顶点,但只有足以构成一棵树的 n-1 条边。一棵有n个顶点的生成树有且仅有n-1条边,如果生成树中再添加一条边,则必定成环
(5)最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树(Minimum Cost Spanning Tree),简称 MST

è¿éåå¾çæè¿°

2.普里姆(Prim)算法的概述

用于求解图的最小生成树
贪心策略:每次都选择权值最小的边作为最小生成树的边

3.普里姆(Prim)算法的基本思路

(1) 设 G=(V,E)是连通网,T=(U,D)是最小生成树,V,U 是顶点集合,E,D 是边的集合
(2) 若从顶点 i 开始构造最小生成树,则从集合 V 中取出顶点 i 放入集合 U 中,标记顶点 i 为已被访问,即 visited[i] = true
(3) 若集合 U 中顶点 ui 与集合 V-U(差集) 中的顶点 vj 之间存在边,则寻找这些边中权值最小的边,但不能构成回路,
将顶点 vj 加入集合 U 中,将边(ui,vj)加入集合 D 中,标记 visited[vj] = true
(4) 重复步骤(3),直到 U 与 V 相等,即所有顶点都被标记为访问过,此时 D 中有 n-1 条边,得到最小生成树

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
好的,下面我会分别介绍普里姆算法和克鲁斯卡尔算法,并给出它们的代码实现。 ### 普里姆算法 普里姆算法是一种贪心算法,用于求解加权无向连通最小生成树。该算法从任意一个顶点开始,每次选择一条权值最小的边,将其加入到生成树中,直到所有顶点都被加入到生成树中为止。 普里姆算法的时间复杂度为 $O(ElogV)$,其中 $V$ 表示顶点数,$E$ 表示边数。 下面是普里姆算法的 Python 代码实现: ```python import heapq def prim(graph, start): mst = [] # 用于存储最小生成树的边 visited = set([start]) # 记录已经访问过的节点 candidates = [(weight, start, end) for end, weight in graph[start].items()] heapq.heapify(candidates) # 将初始的候选边加入小根堆中 while candidates: weight, start, end = heapq.heappop(candidates) if end not in visited: # 如果当前边的终点没有被访问过 visited.add(end) mst.append((start, end, weight)) for next_end, weight in graph[end].items(): if next_end not in visited: heapq.heappush(candidates, (weight, end, next_end)) # 将新的候选边加入小根堆中 return mst ``` 其中,`graph` 是一个字典,表示的邻接表形式,`start` 是起始节点的编号。 ### 克鲁斯卡尔算法 克鲁斯卡尔算法也是一种贪心算法,用于求解加权无向连通最小生成树。该算法的基本思想是,将所有边按照权值从小到大排序,依次取出每条边,如果这条边的两个端点不在同一个连通块中,就将它们合并,直到所有节点都在同一个连通块中为止。 克鲁斯卡尔算法的时间复杂度为 $O(ElogE)$,其中 $E$ 表示边数。 下面是克鲁斯卡尔算法的 Python 代码实现: ```python def kruskal(graph): edges = [(weight, start, end) for start in graph for end, weight in graph[start].items()] edges.sort() # 将所有边按照权值从小到大排序 parent = {node: node for node in graph} # 用于记录每个节点的父节点 mst = [] # 用于存储最小生成树的边 for weight, start, end in edges: while start != parent[start]: # 找到 start 的根节点 start = parent[start] while end != parent[end]: # 找到 end 的根节点 end = parent[end] if start != end: # 如果 start 和 end 不在同一个连通块中 mst.append((start, end, weight)) parent[end] = start # 将 end 的根节点设为 start 的根节点 return mst ``` 其中,`graph` 是一个字典,表示的邻接表形式。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值