论文题目:
[ICLR 2021] BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network Quantization
为什么研究这个(以前工作哪里不好)?
- 不同层的混合精度难以被定义为一个可微分的目标
- 由于混合精度量化巨大的搜索空间,NAS搜索方法面临巨大的搜索成本
- Hessian方法可以对不同层的重要度排序,但是需要手工决定每层的精度选择
主要贡献
- 提出了一种基于梯度的bit-level量化训练算法。该算法将每一位量化的权重作为一个独立的可训练变量,允许使用基于梯度的优化以及直通估计器(STE)
- 提出了一种bit-level的group Lasso正则器,以动态地降低每层的权重精度,从而产生混合精度的量化方案
- BSQ只使用一个超参数,即正则器强度,来权衡模型的性能和大小
核心方法
量化训练的前向传播和反向传播
其中, w w w是浮点表示, w q w_q wq是对应的 n n n-bit定点表示。反向传播时,由于Round函数不可微分,所以求导时用浮点 w w w代替 w q w_q wq进行梯度计算。
前向传播使用 w q w_q wq计算模型输出和损失函数,反向传播使用浮点 w w w计算梯度,并且 w w w在整个训练过程中都保持浮点表示!
Bit-level量化的训练策略
第1步:提取W的动态范围
W = s ⋅ W s W=s\cdot W_s W=s⋅Ws
其中, s = m a x ( ∣ W ∣ ) s=max(|W|) s=max(∣W∣)是scaling factor, W s W_s Ws是缩放后的权重,于是 W s W_s Ws的元素绝对值都在 [ 0 , 1 ] [0, 1] [0,1]范围内。这一步本质就是将浮点数除以scaling factor。
第2步:将 W s W_s Ws量化到 n n n-bit表示
现在对 W s W_s Ws的元素进行量化:
w q = R o u n d ( ∣ w s ∣ ⋅ ( 2 n − 1 ) ) 2 n − 1 w_q=\frac{Round(|w_s|\cdot (2^n-1))}{2^n-1} wq=