【Bit-level量化】BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network Quantization

论文题目:
[ICLR 2021] BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network Quantization

为什么研究这个(以前工作哪里不好)?

  • 不同层的混合精度难以被定义为一个可微分的目标
  • 由于混合精度量化巨大的搜索空间,NAS搜索方法面临巨大的搜索成本
  • Hessian方法可以对不同层的重要度排序,但是需要手工决定每层的精度选择

主要贡献

  • 提出了一种基于梯度的bit-level量化训练算法。该算法将每一位量化的权重作为一个独立的可训练变量,允许使用基于梯度的优化以及直通估计器(STE)
  • 提出了一种bit-level的group Lasso正则器,以动态地降低每层的权重精度,从而产生混合精度的量化方案
  • BSQ只使用一个超参数,即正则器强度,来权衡模型的性能和大小

核心方法

量化训练的前向传播和反向传播

在这里插入图片描述

其中, w w w是浮点表示, w q w_q wq是对应的 n n n-bit定点表示。反向传播时,由于Round函数不可微分,所以求导时用浮点 w w w代替 w q w_q wq进行梯度计算。

前向传播使用 w q w_q wq计算模型输出和损失函数,反向传播使用浮点 w w w计算梯度,并且 w w w在整个训练过程中都保持浮点表示!

Bit-level量化的训练策略

第1步:提取W的动态范围
W = s ⋅ W s W=s\cdot W_s W=sWs
其中, s = m a x ( ∣ W ∣ ) s=max(|W|) s=max(W)是scaling factor, W s W_s Ws是缩放后的权重,于是 W s W_s Ws的元素绝对值都在 [ 0 , 1 ] [0, 1] [0,1]范围内。这一步本质就是将浮点数除以scaling factor。

第2步:将 W s W_s Ws量化到 n n n-bit表示
现在对 W s W_s Ws的元素进行量化:
w q = R o u n d ( ∣ w s ∣ ⋅ ( 2 n − 1 ) ) 2 n − 1 w_q=\frac{Round(|w_s|\cdot (2^n-1))}{2^n-1} wq=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.zwX

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值