【Bit-level量化】BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network Quantization

论文题目:
[ICLR 2021] BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network Quantization

为什么研究这个(以前工作哪里不好)?

  • 不同层的混合精度难以被定义为一个可微分的目标
  • 由于混合精度量化巨大的搜索空间,NAS搜索方法面临巨大的搜索成本
  • Hessian方法可以对不同层的重要度排序,但是需要手工决定每层的精度选择

主要贡献

  • 提出了一种基于梯度的bit-level量化训练算法。该算法将每一位量化的权重作为一个独立的可训练变量,允许使用基于梯度的优化以及直通估计器(STE)
  • 提出了一种bit-level的group Lasso正则器,以动态地降低每层的权重精度,从而产生混合精度的量化方案
  • BSQ只使用一个超参数,即正则器强度,来权衡模型的性能和大小

核心方法

量化训练的前向传播和反向传播

在这里插入图片描述

其中, w w w是浮点表示, w q w_q wq是对应的 n n n-bit定点表示。反向传播时,由于Round函数不可微分,所以求导时用浮点 w w w代替 w q w_q wq进行梯度计算。

前向传播使用 w q w_q wq计算模型输出和损失函数,反向传播使用浮点 w w w计算梯度,并且 w w w在整个训练过程中都保持浮点表示!

Bit-level量化的训练策略

第1步:提取W的动态范围
W = s ⋅ W s W=s\cdot W_s W=sWs
其中, s = m a x ( ∣ W ∣ ) s=max(|W|) s=max(W)是scaling factor, W s W_s Ws是缩放后的权重,于是 W s W_s Ws的元素绝对值都在 [ 0 , 1 ] [0, 1] [0,1]范围内。这一步本质就是将浮点数除以scaling factor。

第2步:将 W s W_s Ws量化到 n n n-bit表示
现在对 W s W_s Ws的元素进行量化:
w q = R o u n d ( ∣ w s ∣ ⋅ ( 2 n − 1 ) ) 2 n − 1 w_q=\frac{Round(|w_s|\cdot (2^n-1))}{2^n-1} wq=2n1Round(ws(2n1))

第3步:将 W q W_q Wq写成 n n n-bit二进制数表示
w q = ∑ b = 0 n − 1 w s ( b ) ⋅ 2 b 2 n − 1 w_q=\frac{\sum_{b=0}^{n-1}w_s^{(b)}\cdot 2^b}{2^n-1} wq=2n1b=0n1ws(b)2b

以上3个步骤如下图(a)所示,其中 s s s W s ( b ) W_s^{(b)} Ws(b)是可训练的独立参数。

在这里插入图片描述

于是,浮点 W W W可以表示如下:
在这里插入图片描述

但是, W s ( b ) , s i g n ( W ) W_s^{(b)}, sign(W) Ws(b),sign(W)是离散函数,不可优化,因此为了松弛 W s ( b ) W_s^{(b)} Ws(b)的二值限制,采用如下的STE训练。

在这里插入图片描述

训练过程如下图中的例子所示,整个过程和上述公式一致。

在这里插入图片描述

为了使 s i g n ( W ) sign(W) sign(W)也可以动态更新,本文将 W s W_s Ws拆分成了两个部分,一部分是 W p W_p Wp代表 W s W_s Ws中的正数,另一部分是 W n W_n Wn代表 W s W_s Ws中的负数绝对值。于是,
W s ( b ) = W p ( b ) − W n ( b ) W_s^{(b)} = W_p^{(b)} − W_n^{(b)} Ws(b)=Wp(b)Wn(b)

Bit-level Group Lasso

为了在训练过程中引入混合精度量化方案,定义了如下正则器:
在这里插入图片描述

其中, W p ( b ) , W n ( b ) W_p^{(b)}, W_n^{(b)} Wp(b),Wn(b)是从 W g W^g Wg得到的bit表示。
B G L B_{GL} BGL的目的是使 W p ( b ) , W n ( b ) W_p^{(b)}, W_n^{(b)} Wp(b),Wn(b)中某一位 b b b中所有元素同时为0。因此,可以安全地去除该位,以降低精度。

训练流程

给损失函数加了memory consumption-aware reweighing,考虑不同层的内存占用(计算参数量)。

在这里插入图片描述

重量化

由于BSQ用浮点变量训练模型的位表示,本文执行重量化,将 W p ( b ) , W n ( b ) W_p^{(b)}, W_n^{(b)} Wp(b),Wn(b)转换为精确的二进制值,并识别可以去除的全零位。
重量化过程从 W p ( b ) , W n ( b ) W_p^{(b)}, W_n^{(b)} Wp(b),Wn(b)中重构quantized scaled权重 W q ′ W_q^\prime Wq
W q ′ = R o u n d ( ∑ b = 0 n − 1 W p ( b ) ⋅ 2 b − ∑ b = 0 n − 1 W n ( b ) ⋅ 2 b ) W_q^\prime=Round(\sum_{b=0}^{n-1}W_p^{(b)}\cdot 2^b-\sum_{b=0}^{n-1}W_n^{(b)}\cdot 2^b) Wq=Round(b=0n1Wp(b)2bb=0n1Wn(b)2b)
于是, W q ′ W_q^\prime Wq被转换为了 ( n + 1 ) (n+1) (n+1)-bit二进制数,其中每位用 W q ( b ) W_q^{(b)} Wq(b)表示。

精度调整

重量化后,需要调整每一层的精度。具体操作如下【我觉得这部分是本文核心,怎么丢比特?】:
首先,从MSB到LSB检查 W q ( b ) W_q^{(b)} Wq(b),移除所有具有零元素的位,直到第一个非零位。这个过程中scaling factor不变。
然后,从LSB到MSB检查 W q ( b ) W_q^{(b)} Wq(b),当从LSB端被移除一位时, s s s需要翻倍(因为LSB移除一位0后,相当于整个数右移了一位)。
假设精度调整使每一层的精度 n n n变到了 n ′ n^\prime n,scaling factor则需要更新为 s ′ = s ⋅ 2 n ′ − 1 2 n − 1 s^\prime=s\cdot \frac{2^{n^\prime-1}}{2^n-1} s=s2n12n1。精度调整前后的 W W W是等价的:
在这里插入图片描述

重量化和精度调整在训练过程中以固定的间隔周期性地执行。

激活值量化

BSQ只修改权重的精度,不影响激活。因此,激活的精度是固定的,本文取>=4比特。

主要实验

对比不同的 α \alpha α
越大的 α \alpha α使整体精度越低。
在这里插入图片描述

对比不同量化方法

相比于常用的HAWQ和PACT,BSQ的压缩率和准确率都有所提升。
在这里插入图片描述

BTW,这篇文章的实验组织还挺不同于别的文章,ablation study在主实验的前面,第一次见。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.zwX

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值