论文题目:
[ICLR 2021] BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network Quantization
为什么研究这个(以前工作哪里不好)?
- 不同层的混合精度难以被定义为一个可微分的目标
- 由于混合精度量化巨大的搜索空间,NAS搜索方法面临巨大的搜索成本
- Hessian方法可以对不同层的重要度排序,但是需要手工决定每层的精度选择
主要贡献
- 提出了一种基于梯度的bit-level量化训练算法。该算法将每一位量化的权重作为一个独立的可训练变量,允许使用基于梯度的优化以及直通估计器(STE)
- 提出了一种bit-level的group Lasso正则器,以动态地降低每层的权重精度,从而产生混合精度的量化方案
- BSQ只使用一个超参数,即正则器强度,来权衡模型的性能和大小
核心方法
量化训练的前向传播和反向传播
其中, w w w是浮点表示, w q w_q wq是对应的 n n n-bit定点表示。反向传播时,由于Round函数不可微分,所以求导时用浮点 w w w代替 w q w_q wq进行梯度计算。
前向传播使用 w q w_q wq计算模型输出和损失函数,反向传播使用浮点 w w w计算梯度,并且 w w w在整个训练过程中都保持浮点表示!
Bit-level量化的训练策略
第1步:提取W的动态范围
W
=
s
⋅
W
s
W=s\cdot W_s
W=s⋅Ws
其中,
s
=
m
a
x
(
∣
W
∣
)
s=max(|W|)
s=max(∣W∣)是scaling factor,
W
s
W_s
Ws是缩放后的权重,于是
W
s
W_s
Ws的元素绝对值都在
[
0
,
1
]
[0, 1]
[0,1]范围内。这一步本质就是将浮点数除以scaling factor。
第2步:将
W
s
W_s
Ws量化到
n
n
n-bit表示
现在对
W
s
W_s
Ws的元素进行量化:
w
q
=
R
o
u
n
d
(
∣
w
s
∣
⋅
(
2
n
−
1
)
)
2
n
−
1
w_q=\frac{Round(|w_s|\cdot (2^n-1))}{2^n-1}
wq=2n−1Round(∣ws∣⋅(2n−1))
第3步:将
W
q
W_q
Wq写成
n
n
n-bit二进制数表示
w
q
=
∑
b
=
0
n
−
1
w
s
(
b
)
⋅
2
b
2
n
−
1
w_q=\frac{\sum_{b=0}^{n-1}w_s^{(b)}\cdot 2^b}{2^n-1}
wq=2n−1∑b=0n−1ws(b)⋅2b
以上3个步骤如下图(a)所示,其中 s s s和 W s ( b ) W_s^{(b)} Ws(b)是可训练的独立参数。
于是,浮点
W
W
W可以表示如下:
但是, W s ( b ) , s i g n ( W ) W_s^{(b)}, sign(W) Ws(b),sign(W)是离散函数,不可优化,因此为了松弛 W s ( b ) W_s^{(b)} Ws(b)的二值限制,采用如下的STE训练。
训练过程如下图中的例子所示,整个过程和上述公式一致。
为了使
s
i
g
n
(
W
)
sign(W)
sign(W)也可以动态更新,本文将
W
s
W_s
Ws拆分成了两个部分,一部分是
W
p
W_p
Wp代表
W
s
W_s
Ws中的正数,另一部分是
W
n
W_n
Wn代表
W
s
W_s
Ws中的负数绝对值。于是,
W
s
(
b
)
=
W
p
(
b
)
−
W
n
(
b
)
W_s^{(b)} = W_p^{(b)} − W_n^{(b)}
Ws(b)=Wp(b)−Wn(b)
Bit-level Group Lasso
为了在训练过程中引入混合精度量化方案,定义了如下正则器:
其中,
W
p
(
b
)
,
W
n
(
b
)
W_p^{(b)}, W_n^{(b)}
Wp(b),Wn(b)是从
W
g
W^g
Wg得到的bit表示。
B
G
L
B_{GL}
BGL的目的是使
W
p
(
b
)
,
W
n
(
b
)
W_p^{(b)}, W_n^{(b)}
Wp(b),Wn(b)中某一位
b
b
b中所有元素同时为0。因此,可以安全地去除该位,以降低精度。
训练流程
给损失函数加了memory consumption-aware reweighing,考虑不同层的内存占用(计算参数量)。
重量化
由于BSQ用浮点变量训练模型的位表示,本文执行重量化,将
W
p
(
b
)
,
W
n
(
b
)
W_p^{(b)}, W_n^{(b)}
Wp(b),Wn(b)转换为精确的二进制值,并识别可以去除的全零位。
重量化过程从
W
p
(
b
)
,
W
n
(
b
)
W_p^{(b)}, W_n^{(b)}
Wp(b),Wn(b)中重构quantized scaled权重
W
q
′
W_q^\prime
Wq′:
W
q
′
=
R
o
u
n
d
(
∑
b
=
0
n
−
1
W
p
(
b
)
⋅
2
b
−
∑
b
=
0
n
−
1
W
n
(
b
)
⋅
2
b
)
W_q^\prime=Round(\sum_{b=0}^{n-1}W_p^{(b)}\cdot 2^b-\sum_{b=0}^{n-1}W_n^{(b)}\cdot 2^b)
Wq′=Round(b=0∑n−1Wp(b)⋅2b−b=0∑n−1Wn(b)⋅2b)
于是,
W
q
′
W_q^\prime
Wq′被转换为了
(
n
+
1
)
(n+1)
(n+1)-bit二进制数,其中每位用
W
q
(
b
)
W_q^{(b)}
Wq(b)表示。
精度调整
重量化后,需要调整每一层的精度。具体操作如下【我觉得这部分是本文核心,怎么丢比特?】:
首先,从MSB到LSB检查
W
q
(
b
)
W_q^{(b)}
Wq(b),移除所有具有零元素的位,直到第一个非零位。这个过程中scaling factor不变。
然后,从LSB到MSB检查
W
q
(
b
)
W_q^{(b)}
Wq(b),当从LSB端被移除一位时,
s
s
s需要翻倍(因为LSB移除一位0后,相当于整个数右移了一位)。
假设精度调整使每一层的精度
n
n
n变到了
n
′
n^\prime
n′,scaling factor则需要更新为
s
′
=
s
⋅
2
n
′
−
1
2
n
−
1
s^\prime=s\cdot \frac{2^{n^\prime-1}}{2^n-1}
s′=s⋅2n−12n′−1。精度调整前后的
W
W
W是等价的:
重量化和精度调整在训练过程中以固定的间隔周期性地执行。
激活值量化
BSQ只修改权重的精度,不影响激活。因此,激活的精度是固定的,本文取>=4比特。
主要实验
对比不同的
α
\alpha
α
越大的
α
\alpha
α使整体精度越低。
对比不同量化方法
相比于常用的HAWQ和PACT,BSQ的压缩率和准确率都有所提升。
BTW,这篇文章的实验组织还挺不同于别的文章,ablation study在主实验的前面,第一次见。