付费专栏
深度学习扛把子
这个作者很懒,什么都没留下…
展开
-
利用opencv生成面膜
import cv2import dlibimport numpy as npfrom mopi import beauty_face2img_file = '1.jpg'img = cv2.imread(img_file)src = imgimg = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)predictor_path = 'shape_predictor_68_face_landmarks.dat'# 使用dlib自带的frontal_face_dete原创 2022-03-01 14:40:44 · 311 阅读 · 0 评论 -
pybind11用python调用C++代码
C++代码#include <pybind11/pybind11.h>#include<opencv2/opencv.hpp>#include<pybind11/numpy.h>using namespace std;using namespace cv;namespace py = pybind11;void BilinearInsert(Mat& src, Mat& dst, float ux, float uy, int i, in原创 2022-02-07 17:16:25 · 1249 阅读 · 0 评论 -
opencv使用trackbar调控美颜程度
#!/usr/bin/env python3# -*- coding: utf-8 -*-import dlibimport cv2import numpy as npimport mathpredictor_path = 'shape_predictor_68_face_landmarks.dat'# 使用dlib自带的frontal_face_detector作为我们的特征提取器detector = dlib.get_frontal_face_detector()predicto原创 2022-01-12 14:24:23 · 1738 阅读 · 0 评论 -
opencv+Dlib python大眼代码
import dlibimport cv2import numpy as npimport mathpredictor_path = 'shape_predictor_68_face_landmarks.dat'# 使用dlib自带的frontal_face_detector作为我们的特征提取器detector = dlib.get_frontal_face_detector()predictor = dlib.shape_predictor(predictor_path)def .原创 2022-01-04 16:39:54 · 2618 阅读 · 1 评论 -
opencv+Dlib python瘦脸代码
1.瘦脸结果图import dlibimport cv2import numpy as npimport mathpredictor_path = ‘shape_predictor_68_face_landmarks.dat’使用dlib自带的frontal_face_detector作为我们的特征提取器detector = dlib.get_frontal_face_detector()predictor = dlib.shape_predictor(predictor_path)def原创 2021-12-29 16:26:40 · 1416 阅读 · 1 评论 -
tensorflow自定义循环训练模型
import osimport cv2from DeepFace import functions,analyzefrom keras.callbacks import ModelCheckpointfrom sklearn.model_selection import train_test_splitimport numpy as npfrom sklearn import metricsimport tensorflow as tffrom sklearn.utils.class_we原创 2021-12-01 15:42:52 · 1231 阅读 · 0 评论 -
linux配置jupyterlab
首先pip3 install jupyterlab然后生成默认配置文件jupyter lab --generate-config会显示/root/.jupyter/jupyter_lab_config.py然后vim /root/.jupyter/jupyter_lab_config.py修改如下内容:c.ServerApp.allow_remote_access = True #启用远程访问c.ServerApp.ip = ‘*’ #允许所有IP访问c.ServerApp.port原创 2021-11-16 15:39:41 · 2140 阅读 · 0 评论 -
python调用阿里云表情识别API
需要上传图片URL进行识别进入https://help.aliyun.com/document_detail/155645.html?spm=api-workbench…0.0.33171e0fRQiZ2X利用oss存储图片并转换为URL形式原创 2021-11-08 14:17:12 · 911 阅读 · 0 评论 -
flask和ajax实现前后端交互
1原创 2021-11-03 16:21:19 · 618 阅读 · 0 评论 -
利用deepface网络进行表情分类
from sklearn.metrics import confusion_matrixfrom sklearn import metricsimport numpy as npimport matplotlib.pyplot as pltimport numpy as np# =========================================================================================# 比如这里我的labels列表labe原创 2021-11-02 15:47:20 · 248 阅读 · 0 评论 -
fer2013表情数据集
先将代码解压到成train、test、val3个csv文件# -*- coding: utf-8 -*-import csvimport osdatabase_path = r'C:\Users\zhoutao\Downloads\fer2013'datasets_path = r'C:\Users\zhoutao\Downloads\fer2013\dataset'csv_file = os.path.join(database_path, 'fer2013.csv')train_csv原创 2021-11-02 15:37:57 · 903 阅读 · 0 评论 -
python绘制混淆矩阵
test_generator = test_datagen.flow_from_directory( 'dataset/test', target_size=(48, 48), shuffle = False ,#随机打乱默认为true # batch_size=16, color_mode="grayscale", class_mode = 'categorical')predictions = model.原创 2021-11-01 11:24:17 · 557 阅读 · 0 评论 -
利用Python和OpenCV进行面部表情识别
在github下载源码https://github.com/serengil/deepface然后安装deepface包pip install deepface原创 2021-10-08 11:01:58 · 1040 阅读 · 0 评论 -
attention机制的几种方法
Attention其实就是一个当前的输入与输出的匹配度对于时间序列模型来说,输出每一个step的权重对于语言模型来说,输出每一个词的权重self_attention对于时间序列模型来说隐层节点t = i时刻的输出值Hi,去和输入序列中每个step对应的RNN隐层节点状态hj,通过函数F(hj,Hi)来获得目标单词Yi和每个输入单词对应的对齐可能性。然后函数F的输出经过Softmax进行归一化就得到了符合概率分布取值区间的注意力分配系数之后再与每个step对应的隐层节点状态hj进行加权求和得到向原创 2021-06-30 17:28:46 · 537 阅读 · 0 评论 -
LSTM+attention代码原理详解
class lstm(torch.nn.Module): def __init__(self, output_size, hidden_size, embed_dim, sequence_length): super(lstm, self).__init__() self.output_size = output_size self.hidden_size = hidden_size #对应特征维度 self.embed原创 2021-06-30 10:54:39 · 30039 阅读 · 49 评论 -
如何对xgboost模型进行优化
ok原创 2021-06-29 10:09:20 · 2625 阅读 · 0 评论