转载自ACMdreamer的博客:<a target=_blank href="http://blog.csdn.net/acdreamers/article/details/8883285" target="_blank">http://blog.csdn.net/acdreamers/article/details/8883285</a>
定义:设,
,使得
成立的最小的
,称为
对模
的阶,记为
。
定理:如果模有原根,那么它一共有
个原根。
定理:若,
,
,则
。
定理:如果为素数,那么素数
一定存在原根,并且模
的原根的个数为
。
定理:设是正整数,
是整数,若
模
的阶等于
,则称
为模
的一个原根。
假设一个数对于模
来说是原根,那么
的结果两两不同,且有
,那么
可以称为是模
的一个原根,归根到底就是
当且仅当指数为
的时候成立。(这里
是素数)
模有原根的充要条件:
,其中
是奇素数。
求模素数原根的方法:对
素因子分解,即
是
的标准分解式,若恒有
成立,则就是
的原根。(对于合数求原根,只需把
换成
即可)
#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h>
#include <bitset>
using namespace std;
typedef long long LL;
const int N = 1000010;
bitset<N> prime;
int p[N],pri[N];
int k,cnt;
void isprime()
{
prime.set();
for(int i=2; i<N; i++)
{
if(prime[i])
{
p[k++] = i;
for(int j=i+i; j<N; j+=i)
prime[j] = false;
}
}
}
void Divide(int n)
{
cnt = 0;
int t = (int)sqrt(1.0*n);
for(int i=0; p[i]<=t; i++)
{
if(n%p[i]==0)
{
pri[cnt++] = p[i];
while(n%p[i]==0) n /= p[i];
}
}
if(n > 1)
pri[cnt++] = n;
}
LL quick_mod(LL a,LL b,LL m)
{
LL ans = 1;
a %= m;
while(b)
{
if(b&1)
{
ans = ans * a % m;
b--;
}
b >>= 1;
a = a * a % m;
}
return ans;
}
int main()
{
int P;
isprime();
while(cin>>P)
{
Divide(P-1);
for(int g=2; g<P; g++)
{
bool flag = true;
for(int i=0; i<cnt; i++)
{
int t = (P - 1) / pri[i];
if(quick_mod(g,t,P) == 1)
{
flag = false;
break;
}
}
if(flag)
{
int root = g;
cout<<root<<endl;
}
}
}
return 0;
}