http://acm.hdu.edu.cn/showproblem.php?pid=1003 题目链接
Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 143283 Accepted Submission(s): 33394
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
#include<stdio.h> #include<string.h> #include<math.h> int main() { int a[100100],T,n,i,j; int s,t,max; while(scanf("%d",&T)!=EOF) { for(j=1;j<=T;j++) { scanf("%d",&n); for(i=1;i<=n;i++) { scanf("%d",&a[i]); } int count=0; max=-1111; s=t=1; int h=1; for(i=1;i<=n;i++) { count+=a[i]; if(count>max) { max=count; s=h; t=i; } if(count<0) { count=0; h=i+1; } } printf("Case %d:\n",j); printf("%d %d %d\n",max,s,t); if(j!=T) printf("\n"); } } return 0; }