这几天学习kmp算法,解决字符串的匹配问题,开始的时候都是用到BF算法,(BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串T的第一个字符进行匹配,若相等,则继续比较S的第二个字符和 T的第二个字符;若不相等,则比较S的第二个字符和T的第一个字符,依次比较下去,直到得出最后的匹配结果。BF算法是一种蛮力算法。)虽然也能解决一些问题,但是这是常规思路,在内存大,数据量小,时间长的情况下,还能解决一些问题,但是如果遇到一些限制时间和内存的字符串问题,肯定会超时,这是我们就想到了kmp算法,(KMP算法是一种改进的字符串匹配算法,由D.E.Knuth与V.R.Pratt和J.H.Morris同时发现,因此人们称它为克努特--莫里斯--普拉特操作(简称KMP算法)。KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的。具体实现就是实现一个next()函数,函数本身包含了模式串的局部匹配信息。)kmp算法的难点是kmp中的next数组的了解和求法。上网查了很多资料,发现参差不齐,研究了很久,才觉得豁然开朗,,借鉴网上资源以及自己的了解,现总结如下,存在很多不足之处,希望大家能批评指正!!
一、模拟字符串比较过程如下:
1.
首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。
2.
因为B与A不匹配,搜索词再往后移。
3.
就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。
4.
接着比较字符串和搜索词的下一个字符,还是相同。
5.
直到字符串有一个字符,与搜索词对应的字符不相同为止。
6.
这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。
7.
一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。
8.
怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。
9.
已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:
移动位数 = 已匹配的字符数 - 对应的部分匹配值
因为 6 - 2 等于4,所以将搜索词向后移动4位。
10.
因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。
11.
因为空格与A不匹配,继续后移一位。
12.
逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。
13.
逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。
14.
下面介绍《部分匹配表》是如何产生的。
首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。
15.
"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,
- "A"的前缀和后缀都为空集,共有元素的长度为0;
- "AB"的前缀为[A],后缀为[B],共有元素的长度为0;
- "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
- "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
- "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;
- "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;
- "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
16.
"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。
代码:
<span style="font-size:18px;">void makeNext(const char P[],int next[])
{
int q,k;//q:模版字符串下标;k:最大前后缀长度
int m = strlen(P);//模版字符串长度
next[0] = 0;//模版字符串的第一个字符的最大前后缀长度为0
for (q = 1,k = 0; q < m; ++q)//for循环,从第二个字符开始,依次计算每一个字符对应的next值
{
while(k > 0 && P[q] != P[k])//递归的求出P[0]···P[q]的最大的相同的前后缀长度k
k = next[k-1]; //不理解没关系看下面的分析,这个while循环是整段代码的精髓所在,确实不好理解
if (P[q] == P[k])//如果相等,那么最大相同前后缀长度加1
{
k++;
}
next[q] = k;
}
}</span>
现在我着重讲解一下while循环所做的工作:
- 已知前一步计算时最大相同的前后缀长度为k(k>0),即P[0]···P[k-1];
- 此时比较第k项P[k]与P[q],如图1所示
- 如果P[K]等于P[q],那么很简单跳出while循环;
- 关键!关键有木有!关键如果不等呢???那么我们应该利用已经得到的next[0]···next[k-1]来求P[0]···P[k-1]这个子串中最大相同前后缀,可能有同学要问了——为什么要求P[0]···P[k-1]的最大相同前后缀呢???是啊!为什么呢? 原因在于P[k]已经和P[q]失配了,而且P[q-k] ··· P[q-1]又与P[0] ···P[k-1]相同,看来P[0]···P[k-1]这么长的子串是用不了了,那么我要找个同样也是P[0]打头、P[k-1]结尾的子串即P[0]···P[j-1](j==next[k-1]),看看它的下一项P[j]是否能和P[q]匹配。如图2所示
三、next数组的优化代码:
<span style="font-size:18px;">void get_next()
{
int i=0,j=-1;
next[0]=-1;
while(i<len2)
{
if(j==-1||s2[i]==s2[j])
{
i++;
j++;
next[i]=j;
}
else
{
j=next[j];
}
}
} </span>
附件:kmp算法完整代码:
<span style="font-size:18px;">#include<stdio.h>
#include<string.h>
#define N 100005
char s[2*N];
char s1[N];
char s2[N];
int next[N];
int len1,len2,len;
void get_next()
{
int i=0,j=-1;
next[0]=-1;
while(i<len2)
{
if(j==-1||s2[i]==s2[j])
{
i++;
j++;
next[i]=j;
}
else
{
j=next[j];
}
}
}
void KMP()
{
int i=0;
int j=0;
get_next();
while(i<len&&j<len2)
{
if(j==-1||s[i]==s2[j])
{
i++;
j++;
}
else
{
j=next[j];
}
}
if(j==len2)
{
printf("yes\n");
return ;
}
else
{
printf("no\n");
return ;
}
}
int main(void)
{
while(scanf("%s%s",s1,s2)!=EOF)
{
len1=strlen(s1);
len2=strlen(s2);
if(len1<len2)
{
printf("no\n");
continue;
}
strcpy(s,s1);
strcat(s,s1);
len=2*len1;
memset(next,-1,sizeof(next));
KMP();
}
return 0;
}</span>