- 博客(4)
- 收藏
- 关注
原创 深度学习/计算机视觉学习资料
深度学习/计算机视觉相关的博文/在线图书等的汇总,主要是个人比较感兴趣的环境理解/视频理解方向的目标检测mmdetection系列经典目标检测/实例分割算法原理简介和统一实现https://zhuanlan.zhihu.com/p/337375549样本不均衡:https://ranmaosong.github.io/2019/07/20/cv-imbalance-between-easy-and-hard-examples/各种NMS:https://blog.csdn.net/qq_402
2022-01-27 23:36:25 3052
原创 [实例分割/目标检测评价指标] mAP
[1] https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173
2022-01-24 23:28:14 5214
原创 [基于骨架的动作识别] PoseC3D (2021)
背景基于骨架的动作识别GCN的局限性鲁棒性:GCN的识别能力很受骨骼点坐标点平移的影响互操作性:之前研究表明,不同模态(RGB、光流、骨架)是互补的,不同模态的结合能提升识别的性能。GCN很难与其他模态融合可扩展性:GCN将每个人的单一骨骼点视为一个节点,当人数增加时,GCN的复杂度线性增加整体框架姿态估计:人体骨骼点坐标热图生成PoseC3D:分类热图生成根据骨骼点坐标,使用高斯核生成,每帧生成K✖️H✖️W的热图,然后将T帧的堆叠得到整个序列的3D 热图,维度为K✖️T✖
2022-01-23 12:35:50 6812 6
原创 [基于骨架的动作/手势识别] DDNet (MMAsia 2019)
背景基于骨架的行为识别/手势识别方法Overview特征提取,包括位置、视角不变的局部特征,即单帧特征关节集合距离JCD和两种尺度的全局特征,即帧间运动特征slow&fast motion特征嵌入特征融合分类特征提取在行为/手势识别任务中,有的类别是和全局运动无关的,如上图中的捏;而有的类别是和全局运动相关的,如上图中的划V。DDNet设计了JCD和Motion分别提取这两种情况的特征,即题目中的Double FeatureJCD计算方式骨骼点间的欧式距离
2022-01-22 22:59:23 2430
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人