基于DeepSeek,在本地建立你的智能助手

前言

随着信息技术的飞速发展,人工智能(AI)尤其是大模型技术,在各个行业和领域中扮演着越来越重要的角色。大模型,指的是那些参数量巨大的深度学习模型,它们能够处理复杂的数据结构,并提供更加精准、深入的分析结果。这些模型不仅推动了科学研究的进步,也在商业环境中展现了巨大潜力。

微信图片_20250330151017

DeepSeek等国产大模型的崛起,为企业提供了安全可控的智能化解决方案。Ollama作为一款支持本地运行的大模型工具,使得企业可以更加高效地部署、集成和管理这些大模型应用。在本篇文章中,我们将通过Windows系统部署DeepSeek,并通过Spring Boot框架集成Java程序,构建智能助手。

一、行业应用:央国企

自2023年以来,国资委多次对中央企业发展人工智能提出要求。其中,在2024年2月的中央企业人工智能专题推进会上,提出中央企业要“开展AI+专项行动”。会上就有10家央企签署倡议书,表示将主动向社会开放人工智能应用场景。

同年7月,国新办举行“推动高质量发展”系列主题新闻发布会,提出未来五年,中央企业预计安排大规模设备更新改造总投资超3万亿元,更新部署一批高技术、高效率、高可靠性的先进设备。

当前,国资央企纷纷构建自己的行业大模型,典型如南方电网电力行业大模型“大瓦特”、中国石油能源行业大模型“昆仑大模型”。在行业大模型的基础之上,企业通常基于企业务特点构建领域专用大模型,在业务场景中发挥价值。

图片

2023年9月,中核八所

发布自主研发的“龙吟”大模型2.0

图片

2024年3月,中核八所又发布了

图片

2023年9月,中核八所发布自主研发的“龙吟”大模型2.0;2024年3月,中核八所又发布了龙吟·万界,龙吟·万界是集大模型智能体开发、应用、管理于一体的一站式企业服务平台,能够结合核工业各种业务场景快速设计开发并落地Nu Copilot系列数字助理。

中核八所发布了国内首个核领域大模型“龙吟以及首个核领域大模型应用平台“龙吟·万界”,在通用场景如法务、财务、知识管理等,以及核电设计、建造、运维等多个行业特有场景率先落地大模型应用。

图片

图片

✓5个专业场景模型:针对海上油田稳产增产、安全钻井、海工制造、设备维护、LNG(液化天然气)贸易、油气销售等场景,构建数据驱动、业务协同的新模式,进一步提升产业数智化水平
✓6个通用场景模型:针对招标采办、员工健康、辅助办公等需求推出智能应用,助力业务管理和办公效率提升

图片

2024年7月

国家能源集团数智科技公司

发布自研的能源通道大模型

图片

国家能源集团利用煤电化路港航各产业生产运营过程中的设备、货物、物流、销售、气象等数据,对通用大模型进行强化训练,建立具备增强知识潜能的能源通道行业大模型。以该模型认知能力为核心引擎,可构建以煤炭、电力、铁路、港口、航运、化工、销售生产运营计划为驱动的模型体系,形成智能查询与问答、智能平衡与调控、智能预警与通知、智慧分析与决策四大核心能力,全面支持集团实现“全景、共振、变易”的一体化运营调度,显著提高该集团煤电化运一体化运营决策效率和运营能力。

  • 以该模型认知能力为核心引擎,可构建以煤炭、电力、铁路、港口、航运、化工、销售生产运营计划为驱动的模型体系,形成智能查询与问答、智能平衡与调控、智能预警与通知、智慧分析与决策四大核心能力。
  • 全面支持集团实现“全景、共振、变易”的一体化运营调度,显著提高集团煤电化运一体化运营决策效率和运营能力。

✓以该模型认知能力为核心引擎,可构建以煤炭、电力、铁路、港口、航运、化工、销售生产运营计划为驱动的模型体系,形成智能查询与问答、智能平衡与调控、智能预警与通知、智慧分析与决策四大核心能力

✓全面支持集团实现“全景、共振、变易”的一体化运营调度,显著提高集团煤电化运一体化运营决策效率和运营能力

图片

2023年8月,中航信移动科技有限公司

发布自主研发的“千穰”大模型

图片

✓多应用场景:“千穰”融合了视觉大模型、语言大模型、多模态大模型和计算大模型,可在机坪、航站楼、旅客服务等多种应用场景下,满足民航运行、服务和监管需求
✓成功应用:航旅纵横App、多家民航主要机构

图片

2024年8 月

中国石油发布 330 亿参数昆仑大模型

图片

昆仑大模型

中国石油在2024年5月发布了昆仑大模型,昆仑大模型建设包含语言、视觉、多模态及科学计算大模型,其中语言大模型用于文本内容理解、生成,视觉大模型用于图像分类、分割和检测,多模态大模型用于文/图/音混合检索、生成,科学计算大模型采用Transformer算法解决海量数据建模问题。

地震解释大模型

地震解释大模型由勘探开发研究院主导研发,研发团队利用海量地震数据,通过深度神经网络算法,训练形成了具有构造解释、缝洞体预测、岩性识别等地震智能解释功能的AI大模型,模型参数达到50亿规模。

地震解释大模型的成功发布,代表了勘探院在人工智能应用领域迈出了重要一步,也是服务国家战略、响应集团号召、推动行业技术进步的生动实践。

PetroAI大模型

2024年1月,中国石油勘探开发研究院发布了自主研发的AI大语言模型PetroAI。这是油气勘探开发领域迄今上线最早、规模大、功能强的油气行业大语言模型。

✓大模型训练方面,
训练发布不同层次、不同类型、不同尺寸的 8 个大模型,以满足不同业务场景需求。

✓行业大模型方面,
发布 130 亿参数、330 亿参数的语言大模型,以及 3 亿参数的视觉大模型,行业知识问答、概念理解、论文摘要生成、工业视觉理解等专业能力有效提升;

✓专业大模型方面,
发布 50 亿参数地震解释和 1 亿参数测井处理解释两个具有专业特色的大模型,智能化应用取得明显成效;

✓场景大模型方面,
发布 130 亿参数智能问数、3 亿参数设备识别、160 亿参数客户营销 3 个大模型,支撑智能运营问数、图文生成等业务需求

WisGPT大模型

2024年2月,中国石油管道局设计院与百度成立的合资公司发布了国内首个油气储运领域人工智能大模型WisGPT,可以通过文字、语音等多种形式实现人机交互,为企业实现数字化管理以及油气储运工程勘察、设计、施工、运行等提供智能支持。

汇总30家央国器

6401

二、环境准备

在开始部署和集成之前,确保您的开发环境满足以下要求。这包括操作系统、软件工具和硬件配置等。

1. 操作系统要求

  • 操作系统版本: Windows 10或11(建议使用Windows 10 64位版本)

2. 软件工具要求

2.1. Ollama
2.2. 集成开发环境(IDE)
  • 推荐IDE: IntelliJ IDEA(IDEA)
2.3. Java Development Kit (JDK)
  • JDK版本要求: Java 8及以上版本(推荐使用JDK 17)

3.硬件要求

  • 至少16GB RAM(推荐32GB以上)。
  • 至少50GB可用存储空间

三、下载运行DeepSeek

3.1 启动Ollama并验证

双击Ollama启动服务

image

验证

进入cmd或PowerShell界面,输入如下命令,显示版本则安装成功

image

3.2 下载运行DeepSeek模型

进入Ollama官网,模型列表页面,搜索deepseek,这里选择deepseek-r1

https://ollama.com/search

image

选择模型参数,可以看到671b 满血模型,有404GB。因为本地电脑性能有限,这里选择7b(1.5b版本性能有限)。

image

复制右侧命令,在cmd下载并运行模型

ollama run deepseek-r1:7b

image

下载完成后自动运行,出现success则代表成功

3.3 测试DeepSeek

运行命令后会自动进入对话界面,直接输入内容即可与模型聊天:

image

四、集成应用

创建一个基于Spring Boot的Java项目,并集成Ollama以调用DeepSeek模型。

4.1 新建Spring Boot项目

打开IDEA,选择新建项目选项,选择Spring Initializr作为项目创建工具。填写项目的基本信息,如Group Id、Artifact Id、项目名称等。确保选择Java语言,并指定项目的版本号。在选择依赖项时,添加Web依赖,以便后续创建API接口。

image

image

4.2 添加依赖

在项目生成后,打开pom.xml​文件,这是Maven项目的核心配置文件。需要在此文件中添加Ollama的相关依赖。

由于Ollama并非标准库,可能需要手动添加其maven仓库地址(建议阿里云maven地址)。

<dependency>
  <groupId>io.springboot.ai</groupId>
  <artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
  <version>1.0.0</version>
</dependency>

配置后,maven reload操作,下载对应的依赖

image

4.3 新增Ollama配置信息

在 SpringBoot 配置文件application.properties​中增加 Ollama 配置信息:

server.port=8099
spring.application.name=deep-seek-r1
spring.ai.ollama.base-url=http://localhost:11434
spring.ai.ollama.chat.options.model=deepseek-r1:7b

Ollama安装后默认启动服务,监听端口为 11434

image

4.4 编写控制器代码

在Spring Boot项目中创建一个控制器类,如OllamaClientController.java​,用于定义RESTful API接口。通过此接口,前端或其他服务可以调用DeepSeek模型的服务。

image

使用OllamaChatClient进行文字生成或者对话

package com.example.deepseekr1.demo;

import jakarta.annotation.Resource;
import org.springframework.ai.chat.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.ollama.OllamaChatClient;
import org.springframework.ai.ollama.api.OllamaOptions;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@RestController
@RequestMapping("/ollama/chat")
public class OllamaClientController {

    @Resource
    private OllamaChatClient ollamaChatClient;

    /**
     * http://localhost:8099/ollama/chat/v1?msg=大海为什么是蓝色的?
     */
    @PostMapping("/v1")
    public String ollamaChat(@RequestParam String msg) {
        return ollamaChatClient.call(msg);
    }

    /**
     * http://localhost:8099/ollama/chat/v2?msg=计算机学习路线
     */
    @PostMapping("/v2")
    public Object ollamaChatV2(@RequestParam String msg) {
        Prompt prompt = new Prompt(msg);
        ChatResponse chatResponse = ollamaChatClient.call(prompt);
        return chatResponse;
    }

    /**
     * http://localhost:8099/ollama/chat/v3?msg=公众号:技海拾贝,介绍
     */
    @PostMapping("/v3")
    public Object ollamaChatV3(@RequestParam String msg) {
        Prompt prompt = new Prompt(
                msg,
                OllamaOptions.create()
                        .withModel("qwen2:0.5b")
                        .withTemperature(0.4F));
        ChatResponse chatResponse = ollamaChatClient.call(prompt);
        return chatResponse.getResult().getOutput().getContent();
    }
  
}

还可以指定模型回答,这里v3接口调用qwen2:0.5b模型(调用时,把该模型启动运行)。

4.5 启动服务

image

4.6 测试

在完成了Spring Boot项目的搭建和DeepSeek服务的集成,并启动服务后,下一步就是确保API接口能够正确地调用DeepSeek模型。为了实现这一点,使用Apifox这款API测试工具来进行接口测试

image

这个输入:大海为什么是蓝色的,点击发送,将会被传递给DeepSeek模型进行处理。Body返回回答内容。

image

image

没有联网,基于本地的知识库,找不到

拓展:在发起请求后,可以看到本地CPU、内存几乎完全占用。当询问复杂问题时,出现比较长时间没有响应,这就需要更高的算力。

image

五、结束语

至此,我们已经成功在Windows本地部署了Ollama,并将DeepSeek模型集成到Spring Boot应用中,通过API接口进行了交互测

试。在实际应用中,需要更友好的用户界面来与DeepSeek进行交互,后续将使用Cursor工具来创建Web界面,能够更加直观地

与DeepSeek模型互动。

随着技术的不断进步,集成大模型到企业应用中将变得越来越普遍,未来的大模型将为企业提供更多的创新机会,帮助企业在数

据驱动的时代中抢占先机。欢迎关注微信公众号"技海拾贝",获取更多前沿技术和实战经验分享,持续探索智能技术的星辰大

海。

点击关注收藏

### DeepSeek 本地部署功能与使用场景 #### 功能概述 DeepSeek是一款开源的大规模语言模型,其本地部署能够提供多种高级功能。通过本地化部署,用户可以在不依赖外部网络的情况下利用这些功能,从而更好地保护敏感数据并提高处理效率。 - **自然语言理解(NLU)** 和 **生成(NLG):** 支持多轮对话、问答系统构建以及复杂语境下的文本生成任务[^1]。 - **定制训练:** 用户可以根据特定领域的需求微调预训练好的大型语言模型,使其更贴合实际应用场景的要求. - **API接口服务:** 提供RESTful API形式的服务端口,方便开发者集成到现有应用程序中去,快速搭建基于AI的应用程序原型或产品级解决方案. #### 使用场景实例 ##### 场景一:企业内部知识库查询助手 对于拥有大量文档资料的企业来说,可以将DeepSeek部署于内网服务器上作为智能检索工具来辅助员工查找所需信息。它不仅限于简单的关键词匹配搜索方式;而是通过对上下文的理解来进行精准定位,并给出最有可能的答案摘要。 ```python from deepseek import KnowledgeBaseQA qa_system = KnowledgeBaseQA() response = qa_system.ask("公司去年第四季度销售业绩如何?") print(response) ``` ##### 场景二:个性化聊天机器人开发平台 借助DeepSeek的强大对话能力,创建专属品牌的虚拟客服代表成为可能。无论是电商平台上的在线导购还是金融行业的客户服务人员都可以由这样的自动化代理承担起初步咨询解答工作,减轻人工负担的同时提升用户体验满意度。 ```python from deepseek import ChatBot chatbot = ChatBot(personality="友好型", domain_knowledge=["电子产品"]) conversation_history = [] while True: user_input = input("您说:") response = chatbot.reply(user_input, conversation_history=conversation_history) print(f"ChatBot回复:{response}") conversation_history.append((user_input,response)) ``` ##### 场景三:教育行业中的自动作文评分系统 针对学校和培训机构而言,则可应用此框架建立一套智能化评估机制用于批改学生提交的文章作业。该过程涉及语法错误检测、逻辑连贯性分析等多个方面考量因素综合打分评定等级。 ```python from deepseek import EssayScoringSystem scorer = EssayScoringSystem(criteria={"结构":0.3,"内容":0.4,"表达":0.3}) score = scorer.evaluate_essay("这是一篇关于环境保护重要性的短文...") print(score) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值