Codeforces Round 489 (Div. 2) E. Nastya and King-Shamans(线段树)

文章讲述了如何利用线段树数据结构解决一个关于非负整数数组的查询问题,通过绑定前缀和与数组元素的差值,将单点修改转化为区间操作,以高效地维护关系并处理查询需求。
摘要由CSDN通过智能技术生成

原题链接:E. Nastya and King-Shamans


题目大意:


给出一个长度为 n n n 的非负整数数组 a a a,设 s i s_{i} si a a a 的前 i i i 项前缀和: s i = ∑ i = 1 i a i s_{i}=\sum_{i=1}^{i}a_{i} si=i=1iai

给出 q q q 次询问,格式为 p p p x x x,表示将 a p a_{p} ap 的值改为 x x x

修改完成后,回答是否存在一个位置 i i i ,使得 a i = s i − 1 a_{i} = s_{i-1} ai=si1

如果有多个位置可以任意输出,否则输出 − 1 -1 1

解题思路:


非常好线段树题。

注意到查询的是一个前缀和的形式,即 a i = s i − 1 a_{i}=s_{i-1} ai=si1 的形式,这直接在线段树上是不好维护的,查询也不好查询。我们把 a i a_{i} ai s i − 1 s_{i-1} si1 绑定在一起,变成 a i − s i − 1 a_{i}-s_{i-1} aisi1 的形式。

那么考虑一个单点修改造成的影响,假设初值为 a p a_{p} ap,修改后为 a p ′ a_{p}' ap

  • 修改后 a p > a p ′ a_{p} > a_{p'} ap>ap ,那么我们后续的 s p + 1 , s p + 2 , . . . , s n s_{p+1},s_{p+2},...,s_{n} sp+1,sp+2,...,sn 显然都会减少 ∣ a p ′ − a p ∣ \mid a_{p}' - a_{p} \mid apap
  • 修改后 a p < a p ′ a_{p} < a_{p'} ap<ap ,那么我们后续的 s p + 1 , s p + 2 , . . . , s n s_{p+1},s_{p+2},...,s_{n} sp+1,sp+2,...,sn 显然都会增加 ∣ a p ′ − a p ∣ \mid a_{p}' - a_{p} \mid apap
  • 对位置 p p p 而言,直接修改 a p ′ a_{p}' ap a p a_{p} ap 的差值即可。

这样,我们把单点修改变成了区间加的形式,就能动态维护 a i a_{i} ai s i − 1 s_{i-1} si1 的关系了。

现在考虑怎么做查询的操作,我们容易发现一个事实:

如果要使得 a i = s i − 1 a_{i}=s_{i-1} ai=si1 的话,那么我们 s i s_{i} si 会是成倍增长的。

比如考虑如下的情况:

a : a: a: [ 1 , 1 , 2 , 4 , 8 , 16 , 32 , 64 , 128 , . . . ] [1,1,2,4,8,16,32,64,128,...] [1,1,2,4,8,16,32,64,128,...]
s : s: s: [ 1 , 2 , 4 , 8 , 16 , 32 , 64 , 128 , 256 , . . . ] [1,2,4,8,16,32,64,128,256,...] [1,2,4,8,16,32,64,128,256,...]

又由于 1 ≤ a i ≤ 1 0 9 1 \leq a_{i} \leq 10^{9} 1ai109 ,设 V = max ⁡ { a 1 , a 2 , . . . , a n } V=\max\{a_{1},a_{2},...,a_{n}\} V=max{a1,a2,...,an} 那么我们最多只会有 log ⁡ V \log V logV a i a_{i} ai 会成为答案,因为 s i s_{i} si 最多经过 log ⁡ V \log V logV 次倍增之后就会大于 1 0 9 10^{9} 109 的范围,因此我们可能成为答案的位置不会超过 log ⁡ V \log V logV 个。

想想我们不可能成为答案的位置会是什么样的,一定是 a i − s i − 1 < 0 a_{i}-s_{i-1} < 0 aisi1<0

而那些所有的 a i − s i − 1 ≥ 0 a_{i} - s_{i-1} \geq 0 aisi10 的值都可能会是我们的答案,且又因为 a i ≥ s i − 1 a_{i} \geq s_{i-1} aisi1,那么每次一定会使得 s i ≥ 2 ⋅ s i − 1 s_{i} \geq 2 \cdot s_{i-1} si2si1 ,这些位置不会超过 log ⁡ V \log V logV 个。

线段树维护区间最大值,我们暴力递归每一个区间,如果区间最大值 < 0 < 0 <0 ,则我们直接跳过这些区间,我们只搜索那些 [ l , r ] [l,r] [l,r] 区间的最大值 ≥ 0 \geq 0 0 的,当搜索到叶子节点时,且 a i − s i − 1 = 0 a_{i}-s_{i-1}=0 aisi1=0 我们就找到了一个合法答案,这样单次询问的复杂度会是 O ( log ⁡ n log ⁡ V ) O(\log n \log V) O(lognlogV) 的,可以通过此题。

时间复杂度: O ( q log ⁡ n log ⁡ V ) O(q\log n \log V) O(qlognlogV)

AC代码:

#include <bits/stdc++.h>
using namespace std;

using PII = pair<int, int>;
using i64 = long long;

const int N = 2e5 + 1;

i64 Seg[N << 2], lzy[N << 2], a[N], pre[N];

#define lson k << 1, l, mid
#define rson k << 1 | 1, mid + 1, r

void build(int k, int l, int r) {
    if (l == r) {
        Seg[k] = a[l] - pre[l - 1];
        return;
    }
    int mid = l + r >> 1;
    build(lson), build(rson);
    Seg[k] = max(Seg[k << 1], Seg[k << 1 | 1]);
}

void pushdown(int k, int l, int r) {
    int lt = k << 1, rt = k << 1 | 1;
    Seg[lt] += lzy[k], Seg[rt] += lzy[k];
    lzy[lt] += lzy[k], lzy[rt] += lzy[k];
    lzy[k] = 0;
}

void Modify(int k, int l, int r, int x, int y, i64 v) {
    if (l >= x && r <= y) {
        Seg[k] += v;
        lzy[k] += v;
        return;
    }
    if (lzy[k]) pushdown(k, l, r);
    int mid = l + r >> 1;
    if (x <= mid) Modify(lson, x, y, v);
    if (y > mid) Modify(rson, x, y, v);
    Seg[k] = max(Seg[k << 1], Seg[k << 1 | 1]);
}

int res = -1;
void Query(int k, int l, int r) {
    if (Seg[k] < 0 || res != -1) return;
    if (l == r) {
        if (Seg[k] == 0) {
            res = l;
        }
        return;
    }
    if (lzy[k]) pushdown(k, l, r);
    int mid = l + r >> 1;
    Query(lson), Query(rson);
}

void solve() {
    int n, q;
    cin >> n >> q;

    for (int i = 1; i <= n; ++i) {
        cin >> a[i];
        pre[i] = pre[i - 1] + a[i];
    }

    build(1, 1, n);

    for (int i = 1; i <= q; ++i) {
        i64 p, v;
        cin >> p >> v;

        i64 add = v - a[p];
        a[p] = v;
        Modify(1, 1, n, p, p, add);
        if (p + 1 <= n) {
            Modify(1, 1, n, p + 1, n, -add);
        }
        res = -1;
        Query(1, 1, n);
        cout << res << '\n';
    }
}

signed main() {

    ios::sync_with_stdio(0);
    cin.tie(0), cout.tie(0);

    int t = 1; //cin >> t;
    while (t--) solve();

    return 0;
}
  • 18
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柠檬味的橙汁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值