机器学习|深度学习
在做深度学习模型时遇到的一些问题和解决措施
Mrzhuang007
这个作者很懒,什么都没留下…
展开
-
将tensorflow模型部署到服务器上 - 方法2
一年多前写过一篇类似文章,https://blog.csdn.net/qq_17190121/article/details/99696768#comments_14242069 从反馈上看,有部分小伙伴表示没看懂,所以这次用另一种更简单的方式编写。 环境 python 3.8.3 tensorflow 2.4.0 制作测试模型 注意: tensorflow版本1和版本2的接口不同, 我这里套用原来的代码, 修改部分需要兼容的代码.比如 tf.placeholder() --> tf.comp.原创 2020-12-17 18:20:31 · 2086 阅读 · 7 评论 -
机器学习入门之k-means算法
k-means算法 简介 据说是机器学习中最简单的一种方法,属于非监督学习这一类。通俗一点讲,给机器一堆数据,告诉机器要分成多少种类别,然后机器就根据算法进行各种操作。 实现原理 需要我们确定变量k,即最终 的数据会有几种类别。 总共有k个中心坐标,一开始可以随机赋值,通过计算目标点坐标与所有中心坐标的距离,将其归类在距离较近的类别中。 之后根据类别中的目标点计算平均值重新得到中心坐标,再重复上面...原创 2019-08-02 18:27:02 · 196 阅读 · 0 评论 -
将tensorflow模型部署到服务器上
基本思路:利用tensorflow官方提供的tensorflow serving进行部署,同时,为了免去环境配置等麻烦操作,可借助docker容器。 一、服务器环境选择 首先肯定要去租一个服务器,例如阿里云。一开始选了window server2012,结果很坑,装不了docker。上网想查解决方法,发现别人也遇到过这个问题。 了解的原因大概是:docker需要在linux的环境下运行。但通...原创 2019-08-17 19:09:09 · 14176 阅读 · 9 评论 -
将keras模型部署到服务器上
keras是基于TensorFlow的,所以可以先将其转为TensorFlow的模型,再部署。 关于TensorFlow模型的部署可以看我的另一篇博客将TensorFlow模型部署到服务器上 下面是keras转TensorFlow的参考代码 # -*- coding: utf-8 -*- from keras.layers.core import Activation, Dense, F...原创 2019-09-21 19:34:54 · 3173 阅读 · 0 评论