Fourier Transform

introduction

本文对傅里叶逆变换的基本思想和推导过程进行介绍。

其基本思想是非周期函数可以表示为一系列复指数函数的叠加——对它进行正交分解。

lemma

在广义函数意义下, 12π+ejωtdω=lima+aaejωtdω=lima+sinatπt 弱收敛于 δ(t)

  • 正交基:复指数函数集 {ejωt} [,+] 上两两正交

因为 <ejω0t,ejωt>=+ejω0tejωtdω=+ej(ω0ω)tdω=2πδ(ω0ω)=0,ω0ω <script type="math/tex" id="MathJax-Element-53"> = \int_{-\infty}^{+\infty}e^{j\omega_0 t}e^{-j\omega t}d\omega = \int_{-\infty}^{+\infty}e^{j(\omega_0-\omega)t}d\omega = 2\pi\delta(\omega_0-\omega) = 0,\omega_0 \neq \omega</script>,注意到复数域上的内积为某一函数乘以另一函数的共轭转置。

这个性质可以看作是周期的正(余)弦函数到非周期——或者认为周期为无穷大——的复指数函数的推广。

derivation

我们从傅里叶级数出发,令 x(t)=n=+Fnejnω0t,Fn=1TTx(t)ejnω0tdt,ω0=2πT
ω00 时,有 T,nω0ω ,定义 X(ω)=+x(t)ejωtdt ,则 Fn=1TX(jnω0t) ,带入上式

x(t)=1Tn=+X(jnω0t)ejnω0t=12πn=+X(jnω0t)ejnω0tω0=12πn=+X(jnω0t)ejnω0t[(n+1)ω0nω0]

ω00 时,有 (n+1)ω0nω0dω ,那么

x(t)=12π+X(ω)ejωtdω

这就是傅里叶逆变换的表达式,同时我们也得到了傅里叶变换的表达式,即

X(ω)=+x(t)ejωtdt

上述的推导,将对周期函数的分解扩展到了对非周期函数的分解,注意到傅里叶变换是其逆变换的一个副产物。我们可以通过傅里叶变换将非周期函数从时域变换到频域,因为经过此种变换后函数的变量已经由 t 变成了jω

根据傅里叶级数的相关知识容易知道当 ω 确定时, X(ω) 包含了 x(t) 中频率为 ω 的复指数分量的幅度和相位信息——它是一个复函数。于是 X(ω) 能够表示为 |X(ω)|ejφ(ω) ,其中 |X(ω)| 称为 x(t) 的幅度谱, ejφ(ω) 称为 x(t) 的相位谱。

周期信号不满足绝对可积条件,但在允许冲激函数存在并认为它有意义的前提下,绝对可积条件就成为不必要的限制,也就有周期信号的傅里叶变换。

为了将周期信号与非周期信号的分析方法统一起来,在引入 δ 函数的情况下容易得到周期函数的傅里叶变换

X(ω)=2πn=+X(kω0)δ(ωkω0)

当非周期函数 x(t) 绝对可积时,其傅里叶变换不仅是 ω 的函数,也是 jω 的函数,在这种情况下其傅里叶变换可以写作 X(jω) ,但是一些不满足绝对可积条件的信号,其傅里叶变换中会出现 δ(ω) ,则这些信号的傅里叶变换只能是 ω 的函数,而不是 jω 的函数。

所以个人认为用 X(ω) 来表示某函数的傅里叶变换是比 X(jω) 更为恰当的。

summary

傅里叶逆变换是一种非周期函数的分解方式,本质上是利用一系列复指数函数在整个时间域上对它进行分解。

傅里叶变换是非周期函数在一组正交基向量(复指数函数)上的投影,同时它也是正交变换。通过引入冲激函数,使得周期函数也能利用傅里叶变换进行分析。

reference

  1. 信号与系统(第二版)
  2. 数字信号处理:理论、算法与实现(第三版)
  3. 傅里叶分析之掐死教程(完整版)
  4. 复数形式傅立叶变换的物理意义,相位究竟指的是什么?
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值