配置以及监测:用GPU来跑Keras

本文介绍了如何配置系统以利用GPU运行Keras,包括检查Tensorflow的GPU版本、CUDA安装及环境变量设置。同时,提供了两种方法监测GPU使用率,一是通过NVIDIA的NVSMI工具,二是利用任务管理器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前提条件:

  • 你的系统有GPU(Nvidia.因为AMD还没有工作)
  • 您已经安装了tensorflow的GPU版本
  • 您已安装CUDA

并且配置好环境变量。

检测是否配置成功

第一步

from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

输出

[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 17774500374908728487
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 3146829004
locality {
  bus_id: 1
  links {
  }
}
incarnation: 17779657347897244584
physical_device_desc: "device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1"
]

第二步

# 检查Keras是否调用GPU

from keras import backend as K

K.tensorflow_backend._get_available_gpus()

输出:

['/job:localhost/replica:0/task:0/device:GPU:0']
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值