题目描述
有一个仅由数字0与1组成的n×n格迷宫。若你位于一格0上,那么你可以移动到相邻4格中的某一格1上,同样若你位于一格1上,那么你可以移动到相邻4格中的某一格0上。
你的任务是:对于给定的迷宫,询问从某一格开始能移动到多少个格子(包含自身)。
输入输出格式
输入格式:
输入的第1行为两个正整数n,m。
下面n行,每行n个字符,字符只可能是0或者1,字符之间没有空格。
接下来m行,每行2个用空格分隔的正整数i,j,对应了迷宫中第i行第j列的一个格子,询问从这一格开始能移动到多少格。
输出格式:
输出包括m行,对于每个询问输出相应答案。
输入输出样例
输入样例#1:
2 2
01
10
1 1
2 2
输出样例#1:
4
4
说明
所有格子互相可达。
对于20%的数据,n≤10;
对于40%的数据,n≤50;
对于50%的数据,m≤5;
对于60%的数据,n≤100,m≤100;
对于100%的数据,n≤1000,m≤100000。
果然是比较入门的BFS,适合退役大半年的我复出。。。
加个优化:因为同一路线任意一点延展路径固定,所以我们保存以前路线,下次扫描时判断。
另一种思路:可以用连通块维护并查集,输出该方格所在的联通快的点(然而我都忘了怎么写并查集···)
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=1005,dx[4]={-1,0,1,0},dy[4]={0,1,0,-1};
struct node
{
int x,y;
}x;
bool a[N][N];
int vis[N][N],n,m,n1=0,rec[N*N];
int bfs(node b)
{
int s=0,i,fx,fy;
node t,r;
queue<node>q;
q.push(b);
vis[b.x][b.y]=n1;
while(!q.empty())
{
r=q.front();
q.pop();
s++;
for(i=0;i<4;i++)
{
fx=r.x+dx[i];
fy=r.y+dy[i];
if(fx>=1&&fx<=n&&fy>=1&&fy<=n&&a[r.x][r.y]!=a[fx][fy]&&!vis[fx][fy])
{
t.x=fx;
t.y=fy;
vis[t.x][t.y]=n1;
q.push(t);
}
}
}
return s;
}
int main()
{
int i,j;
char c;
ios::sync_with_stdio(false);
cin>>n>>m;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{
cin>>c;
a[i][j]=c-'0';
}
for(i=1;i<=m;i++)
{
cin>>x.x>>x.y;
if(vis[x.x][x.y])
cout<<rec[vis[x.x][x.y]]<<endl;
else
{
n1++;
rec[n1]=bfs(x);
cout<<rec[n1]<<endl;
}
}
return 0;
}