题目描述
出题是一件痛苦的事情!
相同的题目看多了也会有审美疲劳,于是我舍弃了大家所熟悉的 A+B Problem,改用 A-B 了哈哈!
好吧,题目是这样的:给出一串数以及一个数字 C,要求计算出所有 A - B =C 的数对的个数(不同位置的数字一样的数对算不同的数对)。
输入格式
输入共两行。
第一行,两个整数 N,C。
第二行,NN 个整数,作为要求处理的那串数。
输出格式
一行,表示该串数中包含的满足 A - B = C 的数对的个数。
输入输出样例
输入
4 1
1 1 2 3
输出
3
说明/提示
对于 75% 的数据,20001≤N≤2000。
对于 100% 的数据, 1≤N≤2×10
5
。
保证所有输入数据都在 32 位带符号整数范围内。
思路
运用stl中的二分查找函数lower_bound和upper_bound。找出第一个大于等于B+C的位置k和大于B+C的位置p(考虑存在重复情况).判断找出的点值是否等于A。产生的数对为p - k
#include <bits/stdc++.h>
using namespace std;
int a[200001],b[200001];
int main() {
int n,c;
long long s = 0;
cin >> n >> c;
for (int i = 0;i < n;i++)
scanf("%d",&a[i]);
sort(a,a + n);
for (int i = 0;i < n;i++) {
int k = lower_bound(a + i + 1,a + n,a[i] + c) - a;
int p = upper_bound(a + i + 1,a + n,a[i] + c) - a;
if (a[k] == a[i] + c) {
s += p - k;
}
}
cout << s;
return 0;
}