LabVIEW结合神经网络在图像目标检测中的应用

神经网络在图像识别中的应用

摘要:随着大数据时代的快速发展,图像识别技术的重要性与日俱增,大量的数据集和强大的服务器计算能力,更是如虎添翼,相比传统的图像分类方法已经无法满足用户对于对图像分类灵活性和速度上的要求,甚至在复杂环境下,传统算法在进行图像分类识别的时候暴露出高复杂度,低鲁棒性的劣势。基于卷积神经网络( Convolution Neural Network,CNN) 的图像分类方法,冲破了传统图像分类方法的瓶颈,成为目前图像分类的主流算法。本文综合简单介绍传统方法图像的原理,同时重点提出卷积神经网络在图像识别目标检测方向的应用示例,卷积神经网络不仅解决了传统方法的目标检测,同时具备自己的得天独厚的优势,卷积神经网络在图像识别领域一定有广阔的前景,也期待在能广泛应用于传统工业生产制造领域。
关键词: 卷积神经网络 图像识别

Application of CNN in image recognition

Abstract: With the rapid development of big data era, the importance of image recognition technology is increasing day by day. A large number of data sets and powerful server computing power are even more powerful. Compared with the traditional image classification methods, it can not meet the user’s requirements on the flexibility and speed of image classification. Even in complex environment, the traditional algorithm is very popular in image classification and recognition The disadvantages of high complexity and low robustness are revealed. Image classification method based on convolution neural network (CNN) breaks through the bottleneck of traditional image classification methods and becomes the mainstream algorithm of image classification. In this paper, the principle of traditional image method is introduced, and the application example of convolution neural network in image recognition target detection direction is put forward. Convolution neural network not only solves the target detection of traditional method, but also has its own unique advantages. Convolutional neural network will have a broad prospect in the field of image recognition, and it is expected to be widely used in transmission Industrial production and manufacturing.
Key words : CNN ; Image recognition

0 引言
随着通信技术的迅速发展以及智能手机的全面普及,图像识别的技术在日常生活中应用范围不断扩大。医疗诊断、指纹识别以及面部识别等都属于这一应用的典型案例。为保证图像识别能够为智能生活保驾护航,更加准确、迅速的为广大百姓服务,这正是本文讨论的意义所在。卷积神经网络在图像识别中的研究,就是期望能够通过机器学习以及算法的优化,用最快的速度,精准的识别出目标图像。

1 图像识别技术
图像识别的主要流程包括图像预处理、图像特征描述和提取以及分类器的设计。图像识别技术本身的原理并不算太过复杂,信息的处理是这一技术的关键点所在,图像识别技术需要根据自身对图像的记忆完成具体的识别工作,其实这与人眼识别图像本质上是一样的。其最大的难点在于,计算机在识别过程中对于图像特征的提取存在着不稳定性,而恰恰就是这种不稳定性决定了图像识别的准确性以及效率。
传统的图像识别的常用方法有:贝叶斯分类法、模板匹配法、 核方法等。但是在图像识别过程中,这几种方法在提取特征过程中显示出较为滞后以及复杂的劣势,不能满足用户对于高速度,低耗时等高要求。
当下较为主流的图像识别技术是非线性降维的图像识别技术和神经网络的图像识别技术

  1. 非线性降维的图像识别技术:降维,通过单幅图像数据的高维化,将单幅图像转化为高维空间中的数据集合,对其进行非线性降维。寻求其高维数据流形本征结构的一维表示向量,将其作为图像数据的特征表达向量。
    非线性降维的图像识别技术保证了在特征提取过程中可以维持高维空间的结构。保证其外在流形以及内在的结构,对于图像识别的准确性起到至关重要的作用。相较于更传统的线性降维图像识别技术,此方法对于识别不均匀特性的高维图像,降维后更能够提取出更加准备的目标特性
  2. 神经网络图像识别技术,其能够实现图像的识别主要得益于神经网络学习算法的运用,而在应用神经网络进行的图像识别中,我们首先需要对相关图像进行预处理,然后我们还需要针对图像识别的领域与对象完成具体的神经网络设计,最后我们再进行神经网络的训练来保证其较好的满足图像识别需求。
    相较于传统的图像分类方法,神经网络图像识别技术不再需要人工的对目标图像进行特征描述和提取,而 是通过神经网络自主地从训练样本中学习特征,并且这些特征与分类器关系紧密,这很好地解决了人工提取特征和分类器选择的难题。

2 基于卷积神经网络的图像识别

卷积神经网络,其基本组成包括输入层、卷积层、池化层、全连接层。
通过卷积神经网络进行图像分类较之传统的图像分类方法最大的优势在于模拟大脑的视觉处理机制对图像层次化的抽象,自动筛选特征,从而实现对图像个性化的分类任务。这解决了传统图像分类方法中人工提取特征这一难题,真正的实现了智能化。

  • 输入层 :卷积神经网络的输入层可以直接处理多维数据。它的主要任务是读取图像信息,该层的神经元个数与图像的维度紧密相关。
  • 卷积层 : 卷积层在卷积神经网络中用于特征提取。卷积神经网络中的卷积层是由多个卷积单元组成 的,目的就是为了实现卷积操作。
  • 池化层 : 对输入的特征图进行压缩,一方面使特征图变小,简化 网络计算复杂度;一方面进行特征压缩,提取主要特征。
  • 全连接层 : 全连接层可以整合卷积层或者 池化层具有类别区分性的局部信息。全连接层是连接所有特征,将输出值送给分类器
    卷积神经网络图像识别技术,虽然在目前的主流市场展现出绝对的优势,但是其仍然存在一些亟待解决的问题
  • 训练速度的优化
  • 算法优化
  • 网络的层次结构优化
    2传统方式识别图像
    传统方式检测目标图片的一种方法是根据目标的特征及与周边图像的边界差别进行检测,由于图像的特征复杂度直接影响到算法的设计难度,另一种方式就是模板匹配,在检测图片中与模板进行对比,获取匹配度,从而检测目标图片。
    以下简单介绍模板匹配的实现方法,在一个测试图像中识别目标图片并标记出目标图片的位置,如下所示:
    在这里插入图片描述

选择三种检测目标的图片,在右侧图片中进行识别,并识别出目标图片的位置,目标图片参数位置如下所示:
在这里插入图片描述

传统图像识别方式的识别能力目前已经很成熟,能适应大部分的应用场景,但是对环境的稳定性要求较高,比如被检测图片的亮度、目标图片的复杂性、相机的稳定性等。
3卷积神经网络识别图像
3.1 数据源生成
使用两幅图片 在这里插入图片描述
在这里插入图片描述
作为目标检测图片,像素大小为3232,在像素大小为128128的白色背景中,随机生成1000副图像,图像尺寸为128128,数据格式为.png,图片库生成流程如下:
在这里插入图片描述

数据源生成界面如下所示:
在这里插入图片描述

数据源生成
设置Duplicates=2将目标图片重复出现2次,Output Resolution=128将分辨率设置为128*128,No of Images=1000生成1000副图片,Current Image为当前示意图,Average Intensity Distribution为图片库像素强度图,图片库如下:
在这里插入图片描述

生成图片库
生成图片库的同时,生成图像的标签库,与图片一一对应,如下图所示:
在这里插入图片描述

生成图片标签库
在这里插入图片描述

3.2 训练并测试数据源
通过卷积神经网络方法对生成的1000张数据源进行训练和测试,模型拓扑如下所示:
在这里插入图片描述

(一)初始化一个神经网络参数:

  1. 设置Validation Portion=0.1将其中的100张图片作为测试集,900张图片作为训练集;

  2. 设置minibatch size=64(通常设置为128,256,512考虑到计算机内存通常是2的次方),通常都尝试,来看哪个使得损失函数J的下降速度快并且波动小。

  3. 设置NN_Device=CPU(可以设置为GPU)作为算法执行的处理器;
    (二)初始化Conv3D卷积参数设置:

  4. 使用3D卷积神经网络算法进行训练模型,3D卷积原理如下:
    在这里插入图片描述

  5. 设置Filters=16,Kernel_Size=9,Stride =4,Pad_Type=Same,即内核数16,过滤窗口为9回旋步长为4,自动填充卷积维度。
    (三)Region检测参数配置:

  6. 设置classes=2即检测的目标类型为2种,分别是: 和 ;coords=4使用四个坐标作为检测参数,分别是X坐标、Y坐标、宽度、高度;

  7. 设置thresh=0.8即训练模型的阀值为0.8。
    (四)训练参数:

  8. 配置训练优化算法为SGD即随机梯度下降方法,SGD的主要解决的问题是:收敛速度慢和陷入局部最优。

  9. 定义损失函数为CrossEntropy:
    CrossEntropy有三个神经元,三个输入,一个输出,α=σ(z),其中z=∑ j w j x j +b α=σ(z),其中z=∑jwjxj+b如下:
    在这里插入图片描述

CrossEntropy损失函数定义如下:
在这里插入图片描述

把α=σ(z)带入上式:
在这里插入图片描述

CrossEntropy函数的最大好处是:错误大时,更新多,学得快. 错误小时,学习慢
3) 设定学习率参数:Policy_Type=Step,k=10,即每10个周期学习率下降2倍。
4) 模型训练过程:使用900副图像,随机mBatch=32张去训练模型,训练过程为:执行一个优化步骤(小批量采样->正向传播->损耗评估->反向传播->网络更新),并返回当前迭代的评估损失值。
(五)观察模型训练反馈参数:
参数曲线如下所示:
在这里插入图片描述

参数解释如下所示:

序号 参数 训练反馈参数 参数定义

1 Avg_Recall 0.958276 召回率是覆盖面的度量,度量有多个正例被分为正例,recall=TP/(TP+FN)=TP/P=sensitive,可以看到召回率与灵敏度是一样的。
2 Avg_Class 0.966901 平均等级/类别概率。越高越好。
3 Avg_Obj 0.986602 目标度(置信度)TP概率的平均值(此框中存在对象的概率(锚点))。如果检测到的目标和地面真相之间的IOU大于等于0.5,则认为正确检测(真阳性)。越高越好。
4 Avg_IOU 0.788086 预测和地面真实边界框之间的平均IOU(相交于联合)。
5 Avg_NoObj TN. 0.0685122 TN.的平均置信水平越低越好
6 Count 123.784 当前小批量中地面真实对象的数量。
7 Loss 0.0420179 平均损失(误差)。越低越好。

(六)模型测试:
使用已经训练好的模型对100张测试数据进行测试,测试效果如下所示:
在这里插入图片描述

选择测试集中的第19张作为测试对象,如做下图所示,在图中能准确检测出目标图片 和 的位置,并在图片中使用方框标注出来并用颜色进行分类,神经网络算法能计算出目标检测图像的坐标和大小,即X/Y/W/H四个参数,如下所示:

序号 检测目标 匹配度 类别号 目标图片 阈值 结果
1 目标1 0.999171 0 0.6 通过
2 目标2 0.999904 1 0.6 通过
3 目标3 0.999772 0 0.6 通过
4 目标4 0.991084 1 0.6 通过

4 结论
卷积神经网络图像识别技术在日常生活中如今已经发挥着重要的作用,如已经广泛应用于大数据的背景下,容易获取样本的场景下,如统计、预测未来趋势、故障检测等领域,该技术在图像识别中即能获得传统方式的高精度、高效率的特点,同时解决了传统方法的图像识别过程中无法自学习的缺点,使得无需再花费大量时间去调整算法、调整参数,相信在工厂制造领域也能获得更多的应用。相信神经网络的图像识别能突破技术瓶颈,走进生活中方方面面,这将对于我国未来的经济发展和民众的生活质量将带来较为积极的影响。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值