尽管AI这么火,ChatGPT这么牛,但是它只是一个生成式工具,逻辑推理能力非常差,传统的机器学习方法仍然没有落伍。那么怎么学习机器学习呢,我给大家列出了学习计划
首先,补充基础知识。机器学习包含大量的数学理论,因此在开始之前,需要确保掌握了线性代数,概率论和统计,微积分等相关数学知识。另外,编程也是机器学习中不可或缺的一部分,需要掌握一种科学计算或数据处理的语言,如Python,R等。
其次,理解机器学习的基本概念和算法。这需要阅读相关的教科书或参加在线课程,例如Stanford大学的“机器学习”课程是一个非常好的开始。理解监督学习,无监督学习,半监督学习和强化学习的基本概念,以及主要的机器学习算法,如线性回归,逻辑回归,支持向量机,决策树,聚类,神经网络等。
接下来,通过实际项目来运用所学知识。这可以是参加Kaggle竞赛或者完成特定的数据科学项目。通过这些项目,你可以学习如何清洗数据,如何选择和调整模型,如何评估模型的性能等。
然后,深入研究一些高级的机器学习主题,如深度学习,强化学习等。这需要阅读更多的相关论文和参加专门的课程。
最后,持续学习和跟踪最新的发展。机器学习是一个快速发展的领域,每天都有新的研究和技术出现。你可以通过订阅相关的期刊,参加研讨会,访问顶级学术会议的网站等方式,来了解最新的发展。