Leetcode 1235:规划兼职工作(超详细的解法!!!)

这篇博客介绍了如何解决LeetCode上的第1235题,即规划兼职工作以获得最大报酬。文章通过动态规划的方法解释了解题思路,并提供了超时的初始代码,然后讨论了如何通过优化,对工作按结束时间排序,使用二分查找和数组更新来提高效率。最终,博主分享了问题的其他语言实现,并邀请读者反馈问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

你打算利用空闲时间来做兼职工作赚些零花钱。

这里有 n 份兼职工作,每份工作预计从 startTime[i] 开始到 endTime[i] 结束,报酬为 profit[i]

给你一份兼职工作表,包含开始时间 startTime,结束时间 endTime 和预计报酬 profit 三个数组,请你计算并返回可以获得的最大报酬。

注意,时间上出现重叠的 2 份工作不能同时进行。

如果你选择的工作在时间 X 结束,那么你可以立刻进行在时间 X 开始的下一份工作。

示例 1:

输入:startTime = [1,2,3,3], endTime = [3,4,5,6], profit = [50,10,40,70]
输出:120
解释:
我们选出第 1 份和第 4 份工作, 
时间范围是 [1-3]+[3-6],共获得报酬 120 = 50 + 70。

示例 2:

输入:startTime = [1,2,3,4,6], endTime = [3,5,10,6,9], profit = [20,20,100,70,60]
输出:150
解释:
我们选择第 1,4,5 份工作。 
共获得报酬 150 = 20 + 70 + 60。

示例 3:

输入:startTime = [1,1,1], endTime = [2,3,4], profit = [5,6,4]
输出:6

提示:

  • 1 <= startTime.length == endTime.length == profit.length <= 5 * 10^4
  • 1 <= startTime[i] < endTime[i] <= 10^9
  • 1 <= profit[i] <= 10^4

解题思路

首先这个问题很容易相同动态规划,我们可以定义函数 f ( i ) f(i) f(i)表示位置 i i i的最大值,那么如果有工作是以 i i i这个时间点结束的话,那么:

  • f ( i ) = m a x ( f [ i ] , f [ s ] + p ) f(i)=max(f[i],f[s]+p) f(i)=max(f[i],f[s]+p<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值