最短路问题

0x01 单源最短路径

单源最短路径:给定一个图 G = ( V , E ) G=(V,E) G=(V,E),我们希望找到从给定源节点 s ∈ V s\in V sV到每个节点 v ∈ V v\in V vV的最短路径。

注意:这篇文章的主要作用是代码模板记录,算法不做证明,证明过程参看算法导论!!!

0x0101 Bellman-Ford算法

Bellman-Ford算法的思路非常简单,我们观察下面的图:

我们此时知道0->1的距离 d 01 d_{01} d010->2的距离 d 02 d_{02} d021->2的距离 d 12 d_{12} d12。我们发现 d 01 + d 12 < d 02 d_{01}+d_{12}<d_{02} d01+d12<d02,那么此时就可以缩短 d 02 d_{02} d02。那么,对于从 u u u节点到 v v v节点都可以采用这种方法缩短距离,我们定义该操作为 r e l a x ( u , v ) relax(u,v) relax(u,v)

Bellman-Ford算法的思路就是对图的每条边进行 ∣ V ∣ − 1 |V|-1 V1次处理,每次处理对所有边都进行 r e l a x ( u , v ) relax(u,v) relax(u,v)操作。如果对图的所有边再进行一次 r e l a x ( u , x ) relax(u,x) relax(u,x)处理,如果存在可以缩短的距离,说明存在负权环。显然算法的时间复杂度就是 O ( V E ) O(VE) O(VE),至于算法的证明可以参看算法导论。

int n;      // 点的数量
int dist[N];        // 存储所有点到1号点的距离
struct Edge {     // 边,a表示出点,b表示入点,w表示边的权重
    int a, b, w;
}edges[M];

// 判断是否存在负权环
bool bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,
    // 由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < m; j ++ )
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            if (dist[b] > dist[a] + w)
                dist[b] = dist[a] + w;
        }
    }
	
    for (int i = 0; i < m; i++)
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;
        if (dist[b] > dist[a] + w) return false;
    }
    return true;
}

0x0102 DAG算法

首先通过拓扑排序确定节点之间的一个线性次序。如果有向无环图包含从节点 u u u到节点 v v v的一条路径,则 u u u在拓扑排序的次序中位于节点 v v v的前面。我们只需要按照拓扑排序的次序对节点进行一遍处理即可。每次对一个节点进行处理时,我们对该节点出发的所有的边进行 r e l a x ( u , v ) relax(u,v) relax(u,v)操作。

代码如下,我们通过数组模拟邻接表来表示图。

int n, m;
int h[N], e[M], w[M], ne[M], idx;
int d[N], seq[N], dist[N]; //d:当前点入度 seq:topsort结果 dist:存储所有点到1号点的距离
queue<int> q;

void add(int a, int b, int c) 
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

bool topsort()
{
    int cnt = 0;
    for (int i = 1; i <= n; i ++ )
        if (!d[i]) q.push(i);

    while (!q.empty())
    {
        int t = q.front(); q.pop();
        seq[cnt++] = t;

        for (int i = h[t]; ~i; i = ne[i])
        {
            int j = e[i];
            if (--d[j] == 0)
                q.push(j);
        }
    }
    return cnt == n;
}

void DAG()
{
    topsort();
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    
    for (int i = 0; i < n; i++)
    {
        int u = seq[i];
        for (int j = h[u]; ~j; j = ne[j])
        {
            int v = e[j];
            if (d[v] > d[u] + w[j])
            {
                d[v] = d[u] + w[j];
            }
        }
    }
}

int main()
{
    cin >> n >> m;
    memset(h, -1, sizeof h);
    memset(d, 0, sizeof d);

    for (int i = 0; i < m; i++)
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
        d[b]++;
    }
}

0x0103 Dijkstra算法

Dijkstra算法解决的是带权重的有向图上单源最短路径问题,该问题要求所有边的权重都为非负值。该算法运行过程中维持的关键信息是一组节点集合 S S S(记录哪些点被访问过)。通过最小优先队列 Q Q Q维护 V − S V-S VS,首先将其初始化(通过初始点),然后从 Q Q Q中抽取最短距离点 v v v,将其添加到 S S S集合中。算法重复从节点集 V − S V-S VS中选择最短路径估计最小的节点 v v v,将 v v v加入到集合 S S S,然后对所有从 u u u发出的边进行松弛。

typedef pair<int, int> PII;

int n;      // 点的数量
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储所有点到1号点的距离
bool st[N];     // 存储每个点的最短距离是否已确定

// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0, 1});      // first存储距离,second存储节点编号

    while (heap.size())
    {
        int t = heap.top();
        heap.pop();

        int v = t.second, distance = t.first;

        if (st[v]) continue;
        st[v] = true;

        for (int i = h[v]; ~i; i = ne[i])  //v发出的边进行松弛
        {
            int j = e[i];
            if (dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

0x0104 SPFA算法

SPFA算法实际上就是队列优化的Bellman-Ford算法。Bellman-Ford算法中针对每个点,都要更新一遍所有边的最短距离。实际上,这里面包好了未更新的点去更新其他未更新的点(有点绕)的重复运算。所有我们可以通过记录哪些点遍历过,哪些点没有遍历过来加速Bellman-Ford算法。

SPFA算法最优情况下的时间复杂度是 O ( M ) O(M) O(M),最差和Bellman-Ford算法一样。

int n;      // 总点数
int h[N], w[M], e[M], ne[M], idx;       // 邻接表存储所有边
int dist[N], cnt[N];        // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N];     // 存储每个点是否在队列中

// 如果存在负环,则返回true,否则返回false。
bool SPFA()
{
    queue<int> q;
    for (int i = 1; i <= n; i ++ )
    {
        q.push(i);
        st[i] = true;
    }

    while (!q.empty())
    {
        int t = q.front(); q.pop();
        st[t] = false;

        for (int i = h[t]; ~i; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                
                 // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
                if (cnt[j] >= n) return true;      
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    return false;
}

0x0105 总结

处理环处理负权边时间复杂度
Bellman-Ford可以可以O(N*M)
DAG不可以可以O(N+M)
Dijkstra可以不可以O(MlogN)
SPFA可以可以O(M)~O(N*M)

0x02 所有节点对最短路径

所有节点对最短路径:对于每个节点 u u u v v v,找到从节点 u u u到节点 v v v的最短路径。

0x0201 Floyd算法

Floyd可以处理不包含负权环的节点对最短路径问题。思路如下:

d i j k d_{ij}^{k} dijk为从节点 i i i到节点 j j j的所有中间节点全部取自集合 { 1 , 2 , . . . k } \{1,2,...k\} {1,2,...k}的一条最短路径。当 k = 0 k=0 k=0的时候,从节点 i i i到节点 j j j的一条不包括编号大于 0 0 0的中间节点的路径将没有任何中间节点。这样的路径最多只有一条边,因此, d i j 0 = w i j d_{ij}^{0}=w_{ij} dij0=wij。对于包含中间节点的路径,可以使用 r e l a x relax relax进行放缩。所以

  • d i j 0 = w i j d_{ij}^{0}=w_{ij} dij0=wij
  • d i j k ! = 0 = m i n ( d i j k − 1 , d i k k − 1 + d k j k − 1 ) d_{ij}^{k!=0}=min(d_{ij}^{k-1},d_{ik}^{k-1}+d_{kj}^{k-1}) dijk!=0=min(dijk1,dikk1+dkjk1)
for (int i = 1; i <= n; i++)
	for (int j = 1; j <= n; j++)
		if (i == j) d[i][j] = 0;
		else d[i][j] = INF;

while (m--) 
{
    cin >> x >> y >> z;
    d[x][y] = min(d[x][y], z); //可能有重复边,保存最小的边
}

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
    for (int k = 1; k <= n; k++)
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++)
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

reference:

https://www.acwing.com/blog/content/405/

https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/

https://baike.baidu.com/item/SPFA%E7%AE%97%E6%B3%95/8297411?fromtitle=SPFA&fromid=11018124&fr=aladdin

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值