给你一个数组 nums
,对于其中每个元素 nums[i]
,请你统计数组中比它小的所有数字的数目。
换而言之,对于每个 nums[i]
你必须计算出有效的 j
的数量,其中 j
满足 j != i
且 nums[j] < nums[i]
。
以数组形式返回答案。
示例 1:
输入:nums = [8,1,2,2,3]
输出:[4,0,1,1,3]
解释:
对于 nums[0]=8 存在四个比它小的数字:(1,2,2 和 3)。
对于 nums[1]=1 不存在比它小的数字。
对于 nums[2]=2 存在一个比它小的数字:(1)。
对于 nums[3]=2 存在一个比它小的数字:(1)。
对于 nums[4]=3 存在三个比它小的数字:(1,2 和 2)。
示例 2:
输入:nums = [6,5,4,8]
输出:[2,1,0,3]
示例 3:
输入:nums = [7,7,7,7]
输出:[0,0,0,0]
提示:
2 <= nums.length <= 500
0 <= nums[i] <= 100
解题思路
数据量比较小,所以直接暴力解可以过。
class Solution:
def smallerNumbersThanCurrent(self, nums: List[int]) -> List[int]:
res, n = [], len(nums)
for i in range(n):
cnt = 0
for j in range(n):
if nums[j] < nums[i]:
cnt += 1
res.append(cnt)
return res
也可以想到先排序,得到排序后的数组sorted_nums
,然后遍历nums
原数组中的元素i
,通过二分法查找i
在sorted_nums
中的位置即可知道有多少个元素比起小了。
class Solution:
def smallerNumbersThanCurrent(self, nums: List[int]) -> List[int]:
sorted_nums = sorted(nums)
return [bisect.bisect_left(sorted_nums, num) for num in nums]
由于nums[i]<=100
,所以我们可以采用基数排序的思想,先统计所有元素出现的次数,然后计算所有出现次数的前缀和数组pre
,那么比第i
个元素小的元素个数就是pre[i - 1]
。
class Solution:
def smallerNumbersThanCurrent(self, nums: List[int]) -> List[int]:
cnt = collections.Counter(nums)
for i in range(1, 101):
cnt[i] += cnt[i - 1]
return [cnt[x - 1] for x in nums]
我将该问题的其他语言版本添加到了我的GitHub Leetcode
如有问题,希望大家指出!!!