Leetcode 1071:字符串的最大公因子(超详细的解法!!!)

对于字符串 ST,只有在 S = T + ... + TT 与自身连接 1 次或多次)时,我们才认定 “T 能除尽 S”。

返回最长字符串 X,要求满足 X 能除尽 str1X 能除尽 str2

示例 1:

输入:str1 = "ABCABC", str2 = "ABC"
输出:"ABC"

示例 2:

输入:str1 = "ABABAB", str2 = "ABAB"
输出:"AB"

示例 3:

输入:str1 = "LEET", str2 = "CODE"
输出:"" 

提示:

  1. 1 <= str1.length <= 1000
  2. 1 <= str2.length <= 1000
  3. str1[i]str2[i] 为大写英文字母

解题思路

首先不难想到暴力解法,遍历所有字符串长度的因子,判断其对应的子串是不是原字符串的公因子即可。

class Solution:
    def gcdOfStrings(self, str1: str, str2: str) -> str:
        n1, n2 = len(str1), len(str2)
        for i in range(min(n1, n2), 0, -1):
            if n1 % i or n2 % i: continue
                
            l, r = 0, i
            t = str1[:i]
            while r <= n1 and str1[l:r] == t:
                l, r = r, r + i
                
            if r == n1 + i:
                l, r = 0, i
                while r <= n2 and str2[l:r] == t:
                    l, r = r, r + i
                if r == n2 + i:
                    return t
        return ""

这个问题还有一个更好的解法。问题是求两个字符串的最大公因子,很容易想到gcd算法,所以我们可以写一个字符串版本的gcd算法。

class Solution:
    def gcdOfStrings(self, str1: str, str2: str) -> str:
        def gcds(s1, s2):
            if len(s1) < len(s2): return gcds(s2, s1)
            if not s2: return s1
            if s1[:len(s2)] != s2: return ""
            return gcds(s1[len(s2):], s2)
        return gcds(str1, str2)

因为需要字符串匹配,所以我们使用根相减损术,每次从较大的字符串中减去较小的字符串,直到其中一个字符串为空。

这还不是最好的解法,还有更好的。可以证明当str1+str2==str2+str1的时候,字符串的最大公共子串就是两个字符串长度的gcd(证明过程比较麻烦,直接用结论)。

class Solution:
    def gcdOfStrings(self, s1: str, s2: str) -> str:
        return s1[:math.gcd(len(s1), len(s2))] if s1 + s2 == s2 + s1 else ""

reference:

https://leetcode.com/problems/greatest-common-divisor-of-strings/discuss/307242/C%2B%2B-3-lines

我将该问题的其他语言版本添加到了我的GitHub Leetcode

如有问题,希望大家指出!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值