给定一位研究者论文被引用次数的数组(被引用次数是非负整数),数组已经按照升序排列。编写一个方法,计算出研究者的h指数。
h 指数的定义: “h 代表“高引用次数”(high citations),一名科研人员的 h 指数是指他(她)的 (N 篇论文中)至多有 h 篇论文分别被引用了至少h次。(其余的N - h篇论文每篇被引用次数不多于h次。)"
示例:
输入: citations = [0,1,3,5,6]
输出: 3
解释: 给定数组表示研究者总共有 5 篇论文,每篇论文相应的被引用了 0, 1, 3, 5, 6 次。
由于研究者有 3 篇论文每篇至少被引用了 3 次,其余两篇论文每篇被引用不多于 3 次,所以她的 h 指数是 3。
说明:
如果h有多有种可能的值,h指数是其中最大的那个。
进阶:
- 这是H指数的延伸题目,本题中的
citations
数组是保证有序的。 - 你可以优化你的算法到对数时间复杂度吗?
解题思路
这题是Leetcode 274:H指数(超详细的解法!!!)的拓展。因为已经告诉我们排好序了,所以直接使用前面问题的排序做法。
我们从前向后遍历的过程中一定知道有多少个数比当前遍历到的数大,例如5
,我们知道比5
大的只有一个数。那么k
就是从前向后遍历过程中,满足比k
大的元素个数小于等于k
的最大位置。
class Solution:
def hIndex(self, citations: List[int]) -> int:
i, n = 0, len(citations)
while i < n and n - i > citations[i]:
i += 1
return n - i
由于前面的问题我们使用了排序,所以算法的时间复杂度是O(nlogn)
,我们就直接通过遍历去解决后续问题,实际上可以通过二分法来解决。
我们需要找的是citations[i] <= n - i
的第一个i
的位置
class Solution:
def hIndex(self, citations: List[int]) -> int:
l, n, r = 0, len(citations), len(citations)-1
while l < r:
mid = (l + r + 1) >> 1
if citations[mid] <= n - mid:
l = mid
else:
r = mid - 1
if l < n and n - l > citations[l]:
return n - l - 1
return n - l
我将该问题的其他语言版本添加到了我的GitHub Leetcode
如有问题,希望大家指出!!!