svd
文章平均质量分 87
kennyadelaide
人与人应该多点信任
展开
-
Meta-Learning for Online Update of Recommender Systems
这篇文章是基于元学习的文章,在推荐系统领域通过牺牲可接受的计算代价,更新模型的参数,同时采用数据流式计算,并返回用户感兴趣的结果。文章中涉及到的主要技术有GAT, embedding,MLP。等主要技术。有关论文实现的代码,比较乱(没有工程化处理),但是思路清晰, 不喜勿喷,可以留言评论交流。step 1: 构建用户的反馈历史:主要通过两个方面进行:1 获取指定用户的历史交互item2, 获取指定item 的历史响应用户关键信息如下:step 2: 扩展代表向量,实际上是通过查表lo原创 2022-03-30 17:51:44 · 558 阅读 · 0 评论 -
基于矩阵分解MF 的 biasSVD推荐算法实现
基于python的biasSVD推荐算法原创 2021-11-19 17:07:41 · 906 阅读 · 0 评论 -
基于MF 的推荐系统 funckSVD算法以及实现
funcSVD python 实现原创 2021-11-19 17:02:30 · 1406 阅读 · 1 评论 -
svd求解刚性转变换矩阵
//#include <stdio.h>//#include <iostream>//#include <opencv2/opencv.hpp>//#include <Eigen/Dense>////using namespace Eigen;//using namespace cv;//using namespace std;////#define M_PI 3.1415926////void GetPoints(vector<s原创 2021-07-19 13:13:31 · 1017 阅读 · 0 评论