141. 环形链表 题目
141. 环形链表
给定一个链表,判断链表中是否有环。
如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。
如果链表中存在环,则返回 true 。 否则,返回 false 。
进阶:
你能用 O(1)(即,常量)内存解决此问题吗?
示例 1:
输入:head = [3,2,0,-4], pos = 1
输出:true
解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:
输入:head = [1,2], pos = 0
输出:true
解释:链表中有一个环,其尾部连接到第一个节点。
示例 3:
输入:head = [1], pos = -1
输出:false
解释:链表中没有环。
解题思路
Set
如果之前没有重复的,则继续遍历,否则输出false
public boolean hasCycle(ListNode head) {
Set<ListNode> set = new HashSet<>();
while (head != null) {
if (!set.add(head)) {
return true;
}
head = head.next;
}
return false;
}
快慢指针
本方法需要读者对「Floyd 判圈算法」(又称龟兔赛跑算法)有所了解。
假想「乌龟」和「兔子」在链表上移动,「兔子」跑得快,「乌龟」跑得慢。当「乌龟」和「兔子」从链表上的同一个节点开始移动时,如果该链表中没有环,那么「兔子」将一直处于「乌龟」的前方;如果该链表中有环,那么「兔子」会先于「乌龟」进入环,并且一直在环内移动。等到「乌龟」进入环时,由于「兔子」的速度快,它一定会在某个时刻与乌龟相遇,即套了「乌龟」若干圈。
我们可以根据上述思路来解决本题。具体地,我们定义两个指针,一快一满。慢指针每次只移动一步,而快指针每次移动两步。初始时,慢指针在位置 head,而快指针在位置 head.next。这样一来,如果在移动的过程中,快指针反过来追上慢指针,就说明该链表为环形链表。否则快指针将到达链表尾部,该链表不为环形链表
public boolean hasCycle(ListNode head) {
ListNode fast = head;
ListNode slow = head;
do {
if (fast == null || fast.next == null) {
return false;
}
fast = fast.next.next;
slow = slow.next;
} while (fast != slow);
return true;
}
面试题 02.08. 环路检测
给定一个链表,如果它是有环链表,实现一个算法返回环路的开头节点。
如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。
示例 1:
输入:head = [3,2,0,-4], pos = 1
输出:tail connects to node index 1
解释:链表中有一个环,其尾部连接到第二个节点。
进阶:
你是否可以不用额外空间解决此题?
解题思路
与上面那个题类似,同样分为set方法和快慢指针法
set
我们遍历链表中的每个节点,并将它记录下来;一旦遇到了此前遍历过的节点,就可以判定链表中存在环。借助哈希表可以很方便地实现。
public ListNode detectCycle(ListNode head) {
Set<ListNode> set = new HashSet<>();
while (head != null) {
if (!set.add(head)) {
return head;
}
head = head.next;
}
return null;
}
快慢指针
我们使用两个指针,fast 与 slow。它们起始都位于链表的头部。随后,slow 指针每次向后移动一个位置,而 fast 指针向后移动两个位置。如果链表中存在环,则fast 指针最终将再次与 slow 指针在环中相遇。
此,当发现slow 与 fast 相遇时,我们再额外使用一个指针ptr。起始,它指向链表头部;随后,它和slow 每次向后移动一个位置。最终,它们会在入环点相遇。
- fast一次走两步,slow一次走一步。所以,相遇的时候,fast所走的路程是slow所走的路程的两倍
- 设起始位置到环入口点的距离为X,入口点到第一次相遇的位置的距离为L,C代表环的长度。
- slow和fast第一次相遇时,slow:X+L; fast:X+L+NC (N指代圈次)。
- 由上推出: 2(X+L) = X+L+NC -> X = NC - L;和圈数(环数)无关 -> X = C - L;
- 由上可得:当slow和fast第一次相遇时,把slow放到链表头部,与fast一起走,直到再次相遇,
- 那么这个相遇点就是环的入口点。
public ListNode detectCycle(ListNode head) {
ListNode fast = head;
ListNode slow = head;
do {
if (fast == null || fast.next == null) {
return null;
}
fast = fast.next.next;
slow = slow.next;
} while (fast != slow);
ListNode res = head;
while (res != fast && res != null && fast != null) {
res = res.next;
fast = fast.next;
}
return res;
}