字典dict定义
- key-value键值对的数据的集合
可变的、无序的、key不重复
字典dict定义 初始化
- d = dict() 或者 d = {}
- dict(**kwargs) 使用name=value对初始化一个字典
- dict(iterable, **kwarg) 使用可迭代对象和name=value对构造字典,不过可迭代对象的元素必须是一个二元结构
- d = dict(((1,’a’),(2,’b’))) 或者 d = dict(([1,’a’],[2,’b’]))
- dict(mapping, **kwarg) 使用一个字典构建另一个字典
- d = {‘a’:10, ‘b’:20, ‘c’:None, ‘d’:[1,2,3]}
- 类方法dict.fromkeys(iterable, value)
d = dict.fromkeys(range(5))
~~~~~~~~~~~~~~~~~~~
{0: None, 1: None, 2: None, 3: None, 4: None}
d = dict.fromkeys(range(5),0)
~~~~~~~~~~~~~~~~~~~~~
{0: 0, 1: 0, 2: 0, 3: 0, 4: 0}
字典元素的访问
- d[key]
- 返回key对应的值value
- key不存在抛出KeyError异常
- get(key[, default])
- 返回key对应的值value
- key不存在返回缺省值,如果没有设置缺省值就返回None
- setdefault(key[, default])
- 返回key对应的值value
- key不存在,添加kv对,value为default,并返回default,如果default没有设置,缺省为None
d = dict(((1,'a'),(2,'b')))
print(d[1])
~~~~~~~~~~~~~~~~~~~~~
a
print(d.get(1))
~~~~~~~~~~~~~~~~~~~~~
a
print(d.setdefault(3,'c'))
~~~~~~~~~~~~~~~~~~~~~~~~
c
字典增加和修改
- d[key] = value
- 将key对应的值修改为value
- key不存在添加新的kv对
- update([other]) -> None
- 使用另一个字典的kv对更新本字典
- key不存在,就添加
- key存在,覆盖已经存在的key对应的值
- 就地修改
- d.update(red=1)
- d.update(((‘red’,2),))
- d.update({‘red’:3})
d = dict(((1,'a'),(2,'b')))
d[4] = 'e'
print(d)
~~~~~~~~~~~~~~~~~~
{1: 'a', 2: 'b', 4: 'e'}
d = dict(((1,'a'),(2,'b')))
d.update(red=1)
print(d)
d.update((('red', 2),))
print(d)
d.update({'red': 3})
print(d)
~~~~~~~~~~~~~~~~~~~~~~~
{1: 'a', 2: 'b', 'red': 1}
{1: 'a', 2: 'b', 'red': 2}
{1: 'a', 2: 'b', 'red': 3}
字典删除
- pop(key[, default])
- key存在,移除它,并返回它的value
- key不存在,返回给定的default
- default未设置,key不存在则抛出KeyError异常
- popitem()
- 移除并返回一个任意的键值对
- 字典为empty,抛出KeyError异常
- clear()
- 清空字典
- del语句
a = True
b = [6]
d = {'a': 1, 'b': b, 'c': [1,3,5]}
print(1, d)
del a
del d['c'] # 删除了一个对象[1,3,5]?
print(2, d)
del b[0] # 这里是列表,删除了列表的第0个对象
print(3, b)
print(3, d)
c = b
print(4, c)
del c
# print(5, c) # NameError: name 'c' is not defined
del b
# print(6, b) # NameError: name 'c' is not defined
b = d['b'] # 'b': []
print(7, d['b'])
print(8, b)
~~~~~~~~~~~~~~~~~~~~~~~~~
1 {'b': [6], 'a': 1, 'c': [1, 3, 5]}
2 {'b': [6], 'a': 1}
3 []
3 {'b': [], 'a': 1}
4 []
7 []
8 []
- del a[‘c’] 看着像删除了一个对象,本质上减少了一个对象的引用,del 实际上删除的是名称,而不是对象
字典遍历
遍历key
-for … in dict
- 遍历key
d = {'a': 1, 'b': 2, 'c': [1,3,5]}
for k in d:
print(k)
~~~~~~~~~~~~~~~~
c
a
b
for k in d.keys():
print(k)
~~~~~~~~~~~~~~~~~~~~~
c
a
b
遍历value
- for … in dict
- 遍历value
d = {'a': 1, 'b': 2, 'c': [1,3,5]}
for k in d:
print(d[k])
~~~~~~~~~~~~~~~~
2
[1, 3, 5]
1
for k in d.keys():
print(d.get(k))
~~~~~~~~~~~~~~~~~~~~~~~~
[1, 3, 5]
2
1
for v in d.values():
print(v)
~~~~~~~~~~~~~~~~~~~~~
[1, 3, 5]
2
1
遍历item,即kv对
- for … in dict
- 遍历item,即kv对
d = {'a': 1, 'b': 2, 'c': [1,3,5]}
for item in d.items():
print(item)
~~~~~~~~~~~~~~~~
('a', 1)
('b', 2)
('c', [1, 3, 5])
for item in d.items():
print(item[0], item[1])
~~~~~~~~~~~~~~~~~~~~
b 2
a 1
c [1, 3, 5]
for k,v in d.items():
print(k, v)
~~~~~~~~~~~~~~~~~~~~~~
for k, _ in d.items():
print(k)
~~~~~~~~~~~~~~~~~
b
c
a
for _ ,v in d.items():
print(v)
~~~~~~~~~~~~~
[1, 3, 5]
1
2
字典遍历总结
- Python3中,keys、values、items方法返回一个类似一个生成器的可迭代对象,不会把函数的返回结果复制到内存中
- Dictionary view对象
- 字典的entry的动态的视图,字典变化,视图将反映出这些变化
- Python2中,上面的方法会返回一个新的列表,占据新的内存空间。所以Python2建议使用iterkeys、
- itervalues、iteritems版本,返回一个迭代器,而不是一个copy
字典遍历和移除
- 如何在遍历的时候移除元素
# 错误的做法
d = dict(a=1, b=2, c='abc')
for k,v in d.items(): # RuntimeError: dictionary changed size during iteration
d.pop(k) # 异常
while len(d): # 相当于清空,不如直接clear()
print(d.popitem())
# 正确的做法
d = dict(a=1, b=2, c='abc')
keys = []
for k,v in d.items():
if isinstance(v, str):
keys.append(k)
for k in keys:
d.pop(k)
print(keys)
print(d)
~~~~~~~~~~~~~~~~~~~
['c']
{'b': 2, 'a': 1}
字典的key
- key的要求和set的元素要求一致
- set的元素可以就是看做key,set可以看做dict的简化版
- hashable 可哈希才可以作为key,可以使用hash()测试
- d = {1 : 0, 2.0 : 3, “abc” : None, (‘hello’, ‘world’, ‘python’) : “string”, b’abc’ : ‘135’}
defaultdict
- collections.defaultdict([default_factory[, …]])
- 第一个参数是default_factory,缺省是None,它提供一个初始化函数。
当key不存在的时候,会调用这个工厂函数来生成key对应的value
- 第一个参数是default_factory,缺省是None,它提供一个初始化函数。
import random
d1 = {}
for k in 'abcdef':
for i in range(random.randint(1,5)):
# 同等于range(0, 1), range(0, 2), range(0, 3), range(0, 4)
if k not in d1.keys():
d1[k] = []
d1[k].append(i)
print(d1)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
{'d': [0, 1, 2, 3, 4], 'a': [0], 'f': [0, 1], 'e': [0, 1, 2, 3], 'c': [0, 1, 2], 'b': [0]}
from collections import defaultdict
import random
d1 = defaultdict(list)
for k in 'abcdef':
for i in range(random.randint(1,5)):
d1[k].append(i)
print(d1)
~~~~~~~~~~~~~~~~~~~~~~~~~
defaultdict(<class 'list'>, {'a': [0, 1, 2], 'f': [0, 1], 'b': [0, 1], 'd': [0, 1, 2, 3], 'c': [0], 'e': [0, 1, 2, 3]})
OrderedDict
- collections.OrderedDict([items])
- key并不是按照加入的顺序排列,可以使用OrderedDict记录顺序
from collections import OrderedDict
import random
d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}
print(1, d)
keys = list(d.keys())
print(1.1, keys) # 原始排列
random.shuffle(keys) # 随机排列
print(2, keys)
od = OrderedDict()
for key in keys:
od[key] = d[key]
print(3, od)
print(4, od.keys())
~~~~~~~~~~~~~~~~~~~~~~~~~
1 {'pear': 1, 'apple': 4, 'banana': 3, 'orange': 2}
1.1 ['pear', 'apple', 'banana', 'orange']
2 ['banana', 'pear', 'orange', 'apple']
3 OrderedDict([('banana', 3), ('pear', 1), ('orange', 2), ('apple', 4)])
4 odict_keys(['banana', 'pear', 'orange', 'apple'])
OrderdDict总结
- 有序字典可以记录元素插入的顺序,打印的时候也是按照这个顺序输出打印
- 3.6版本的Python的字典就是记录key插入的顺序(IPython不一定有效果)
- 应用场景:
- 假如使用字典记录了N个产品,这些产品使用ID由小到大加入到字典中
- 除了使用字典检索的遍历,有时候需要取出ID,但是希望是按照输入的顺序,因为输入顺序是有序的
- 否则还需要重新把遍历到的值排序
字典练习
- 用户输入一个数字
- 打印每一位数字及其重复的次数
- 数字重复统计
- 随机产生100个整数
- 数字的范围[-1000, 1000]
- 升序输出所有不同的数字及其重复的次数
- 字符串重复统计
- 字符表’abcdefghijklmnopqrstuvwxyz’
- 随机挑选2个字母组成字符串,共挑选100个
- 降序输出所有不同的字符串及重复的次数