笔者使用 Quadro M4000 显卡用于 LLM 相关任务,但奈何该卡发布的年代过于久远,以至于 LLM 相关任务只能使用例如:Phi3 mini、Qwen 2 2B、GLM 4 8B 以及 Gemini v2 2B等小参数模型,且速度不堪理想,也经常因为显卡过热降频导致对话效率低下。
对于家用而言,不会去考虑那些特别新的 Tesla 计算卡,而会考虑一些旧的大显存平台,最好是大于10 GB 的显存,这样可以跑一些经过量化的、参数量高一些的模型。对于计算相关,推理相关的更应注重FP16
的计算能力,如果有微调需求,同时也应注重FP32
的计算能力。
最近总想着置办一张计算卡用于 Homelab 的 LLM
应用,但是市面上的计算卡/显卡种类太多了,有的时候不晓得要看哪一张显卡,故从TechPowerUp
网站摘录下表,以供参考。
显卡型号 | Chip | Released | VRAM | Bandwidth | BF16 | FP16 | FP32 | FP64 | TDP (W) |
---|---|---|---|---|---|---|---|---|---|
Quadro M4000 (现役) | GM204 | Jun 29th, 2015 | 8 GB GDDR5 | 192.3 GB/s | Nan | Nan | 2.573 TFlops | 80.39 GFlops | 120 |
Tesla P4 | GP104 | Sep 13th, 2016 | 8GB GDDR5 | 192.3GB/s | Nan | 89.12 GFlops | 5.704 TFlops | 178.2 GFlops | 75 |
Tesla P40 | GP102 | Sep 13th, 2016 | 24GB GDDR5 | 347.1 GB/s | Nan | 183.7 GFlops | 11.76 TFlops | 367.4 GFlops | 250< |