描述:
有 n 个气球,编号为0 到 n-1,每个气球上都标有一个数字,这些数字存在数组 nums 中。
现在要求你戳破所有的气球。每当你戳破一个气球 i 时,你可以获得 nums[left] * nums[i] * nums[right] 个硬币。 这里的 left 和 right 代表和 i 相邻的两个气球的序号。注意当你戳破了气球 i 后,气球 left 和气球 right 就变成了相邻的气球。
求所能获得硬币的最大数量。
说明:
你可以假设 nums[-1] = nums[n] = 1,但注意它们不是真实存在的所以并不能被戳破。
0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100
示例:
输入:
[3,1,5,8]
输出:
167
解释:
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
思路分析:
参考链接:https://blog.csdn.net/u014626513/article/details/81146851
解法:动态规划DP,有三重循环。第一重循环是确定每个阶段所截取的每组气球的个数,第二重循环是确定分组,获得每组气球的起始下标,第三重循环是选择刺破的气球下标
State: dp[i][j],表示打爆区间[i,j]中的所有气球能得到的最多金币。题目中说明了边界情况,当气球周围没有气球的时候,旁边的数字按1算,这样我们可以在原数组两边各填充一个1,这样方便于计算。
Function: dp[i][j] = max(dp[i][j], nums[i - 1]*nums[k]*nums[j + 1] + dp[i][k - 1] + dp[k + 1][j]) ( i ≤ k ≤ j )
Return: dp[1][n]中,其中n是两端添加1之前数组nums的个数。
代码实现:
public class Solution {
public int maxCoins(int[] iNums) {
int n = iNums.length;
int[] nums = new int[n + 2];
for (int i = 0; i < n; i++) nums[i + 1] = iNums[i];
nums[0] = nums[n + 1] = 1;
int[][] dp = new int[n + 2][n + 2];
for (int k = 1; k <= n; k++) { //第一重循环是确定每个阶段所截取的每组气球的个数
for (int i = 1; i <= n - k + 1; i++) { //第二重循环是确定分组,获得每组气球的起始下标
int j = i + k - 1;
for (int x = i; x <= j; x++) { //第三重循环是选择刺破的气球下标
dp[i][j] = Math.max(dp[i][j], dp[i][x - 1] + nums[i - 1] * nums[x] * nums[j + 1] + dp[x + 1][j]);
}
}
}
return dp[1][n];
}
}