有 n
个气球,编号为0
到 n-1
,每个气球上都标有一个数字,这些数字存在数组 nums
中。
现在要求你戳破所有的气球。每当你戳破一个气球 i
时,你可以获得 nums[left] * nums[i] * nums[right]
个硬币。 这里的 left
和 right
代表和 i
相邻的两个气球的序号。注意当你戳破了气球 i
后,气球 left
和气球 right
就变成了相邻的气球。
求所能获得硬币的最大数量。
说明:
- 你可以假设
nums[-1] = nums[n] = 1
,但注意它们不是真实存在的所以并不能被戳破。 - 0 ≤
n
≤ 500, 0 ≤nums[i]
≤ 100
示例:
输入:[3,1,5,8]
输出:167 解释:
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> [] coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
思路:
解法:动态规划DP,有三重循环。第一重循环是确定每个阶段所截取的每组气球的个数,第二重循环是确定分组,获得每组气球的起始下标,第三重循环是选择刺破的气球下标
State: dp[i][j],表示打爆区间[i,j]中的所有气球能得到的最多金币。题目中说明了边界情况,当气球周围没有气球的时候,旁边的数字按1算,这样我们可以在原数组两边各填充一个1,这样方便于计算。
Function: dp[i][j] = max(dp[i][j], nums[i - 1]*nums[k]*nums[j + 1] + dp[i][k - 1] + dp[k + 1][j]) ( i ≤ k ≤ j )
Return: dp[1][n]中,其中n是两端添加1之前数组nums的个数。
java版:
public class Solution {
public int maxCoins(int[] iNums) {
int n = iNums.length;
int[] nums = new int[n + 2];
for (int i = 0; i < n; i++) nums[i + 1] = iNums[i];
nums[0] = nums[n + 1] = 1;
int[][] dp = new int[n + 2][n + 2];
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n - k + 1; i++) {
int j = i + k - 1;
for (int x = i; x <= j; x++) {
dp[i][j] = Math.max(dp[i][j], dp[i][x - 1] + nums[i - 1] * nums[x] * nums[j + 1] + dp[x + 1][j]);
}
}
}
return dp[1][n];
}
}
Python版:
class Solution(object):
def maxCoins(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
coins = [1] + [i for i in nums if i > 0] + [1]
n = len(coins)
max_coins = [[0 for _ in range(n)] for _ in range(n)]
for k in range(2, n):
for left in range(n - k):
right = left + k
for i in range(left + 1, right):
max_coins[left][right] = max(max_coins[left][right], \
coins[left] * coins[i] * coins[right] + \
max_coins[left][i] + max_coins[i][right])
return max_coins[0][-1]